SciTE

IN CONTEXT MKIV & LMTX

About SCITE

For a long time at Pragma ADE we used TgXedit, an editor we'd written in Modula. It had some project
management features and recognized the project structure in ConTEXt documents. Later we rewrote
this to a platform independent reimplementation called TgXwork written in Perl/Tk (not to be confused
with the editor with the plural name) that when I checked last still works okay, which is proof that
Perl/Tk has been stable for decades.

In the beginning of the century I can into SciTE, written by Neil Hodgson. Although the mentioned
editors provide some functionality not present in SciTE we decided to use that editor because it frees
us from maintaining our own. I ported our TgX and MetaPost (line based) syntax highlighting to SciTE
and got a lot of others for free.

After a while I found out that there was an extension interface written in Lua. I played with it and
wrote a few extensions too. This pleasant experience later triggered the LuaTgX project.

A decade into the century SciTE got another new feature: you can write dynamic external lexers in
Lua using lpeg. As in the meantime ConTgXt has evolved in a TgX/Lua hybrid, it made sense to look
into this. The result is a couple of lexers that suit TgX, MetaPost and Lua usage in ConTgXt MKIV. As
we also use xml as input and output format a lexer for xml is also provided. And because pdf is one
of the backend formats lexing of pdf is also implemented. In the process some of the general lexing
framework were adapted to suit our demands for speed. For a long time we shipped these files as
well but at point I decided that it made no sense to keep adapting to the relatively frequent changes
in the api. The last version in the 3.* series worked okay, in the 4.* series things failed but we didn't
adapt, and when series 5.* showed up I decided to drop the old lexer compatibility. I assume that a
version of SciTE is run that has Ilpeg available in the main Lua instance and that also supports copying
text fragments using the editor object. (Till that is the case, we provide binaries with the ConTgXt
distribution.)

In the ConTgXt (standalone) distribution you will find the relevant files under:
<texroot>/tex/texmf-context/context/data/scite

Normally a user will not have to dive into the implementation details but in principle you can tweak
the properties files to suit your purpose.

The look and feel

The color scheme that we use is consistent over the lexers but we use more colors that in the traditional
lexing. For instance, TgX primitives, low level TEX commands, TEX constants, basic file structure
related commands, and user commands all get a different treatment. When spell checking is turned
on, we indicate unknown words, but also words that are known but might need checking, for instance
because they have an uppercase character. In figure 1 we some of that in practice.

Installing SCITE

Installing SciTE is straightforward. We are most familiar with MS Windows but for other operating
systems installation is not much different. First you need to fetch the archive from:

www.scintilla.org

STETEL TI0Z-0T-6 | 41+42 103 | SNI2pow | TE unod £7 3 | SZ:7TEE TI0Z-0T- | :20 [Ensia-paiuod-ays

ur L4
Ixaldols)\ || [
{ Ok
Ja3deysdols) || Gf ||
v
deuo\ £ |
474
[Brasz]uerq\ v
or
T\ 6E
@ :2p03 1IXJ=p9Z'Z 13IWTIUNL B30} | wa3sks STY3 3noqge & .HO_MLU WEOWWQWL 2\39p\ 8¢
JE :poy1aW JUSIIND ‘le|Ny0 }1NE43p IEQOJIIE :SPOYIaAW MATApd | 1X33U03-% U as)a\ LE
abed passajoud [‘spuedas ggl [- SWTIUNI < S}E1S BM) ATHU saJded oym g .ﬁu.uamu. WEOMVQWL a\48p\ o€
{9W SE %32} 9W FE - abesn fiowsw jusiind = 531E15 BN} ATHW 0:._“."_.._”/ mm
[BOOAOT + 95559 40 99ETE - sajuanbas 1013u03 = S}E1S BN ATHU =
'§-B32Q UOTSI3A “x3jen) ST STYR - J3uueq X33EN] = 5315 EN) ATHU 4 E
.-. s 9/@'@ :DuTpeo] ‘spuclas g1e'@ - Awrl Durssadold 1sodelaw < S}E1S BN ATHU :OHPU@LLOUGEHHQOPM/ €€
Spu0das rgg-@ - 3WT} PEO] S}U0} < S3E}S BN ATy . .
ZTouoww) wie-@TAJEW}s :S3)T4 £E - S3jUDJ P3pEO] = S}E}S EM] AT W—UOUQEQOH.M/ cE
3pd’ |ENSTA-3X33U00-33135 - 31T4 UT PIABS 3|NS3J = S3IBIS BN ATHUW 5
jed] ST ‘s3pou @ ‘sSpuclas pEe’ e - 2wty uoTiededasd (uUX] = S3E1S BN] ATHU - J0jpus I€
SPEQTEEEZRS O 2N1EA YITM paunsal - J3ZTWOpUERL = 5}E3S BN ATHU ! (Www,.T) poaleds 212J4TO11N} Medp 0E
269 “1J3JTPUT £4GE “133ITp 2EET - $)72q1183 < 5115 BN ATHU . _
giiua - suiajjed papec] < S}E}S BN AT - eet D“_.Q-._ I=T Joj} 514
13uab £132311p Joy puaydeq) 4pd - puayIeq pasn < S}E1S EN] ATHU apoodp1iels\ 8z
||2oueisut g ‘s3sT] ¥}se3 anbTun § - s)SE} yIEBQ]]EI IST] JPOU = SIEIS EN] ATHU
P’ 21nqTi330 ZT ‘A37RUad 7 ‘2nib 7 - abesn flowaw 3pou = S}E1S EN) ATHU :O._HPUWLLOUWE._”HPLMP.M/ =
L LgF 40 S1ST] 6 ‘S3pou Gf - S3pOU PaAlasal dn paueald =< S}E1S EN| ATHU 9z
Nyl ggg “sa|qel €9 ‘sa|npow ZeE - elep apo2alfg palols < SIEIS BN AT
“ sueds T ‘Spuolas gIp’@ IWTIPEO] - 13A10531 33IN0S3] = S}EYS EN] ATHU .ﬁﬁ..m_UOU MSH..UPXWFEOUHﬁSHKFU/ %w.ﬂﬁm.ﬂ—u S 11=M Se 2UTUT qC
x33/3xa33u0d-xa3/doanap/elep/ia - yied ayoed pasn = S3B}S BN ATHUW
Zqam/1E30] - juxa3:juaiedoiney)as - 3114 Bryuod pasn = s3els en) ATyl | pue sJaxsl H—.MOO_MPWE pue eny psppaqus sSyi Y3jTM UOTIBUTQUOS UT e
4-gTuewo uy/uwl/3T1qnd/3df3uado/ S3uoy/Juxal/¥31/I¥a3U03-X31/d03A3p/RIEp/ 1 3= L@v_um_.._u.ﬂ.ﬂmn_m saliTijesd 9yl =jedisuowsp 03 3IX3] SWOS Fm:.h ST STY]| ford
1 abedgqns T afediasn ‘T abedjeas Butysnly < sabed :
*xpd-3pd]/sadinosy/ixazuodydoyanap/elepy/:ia, 2114 Butsn < dux = puayoeq NN
1xajuod/1sodelaw/3xajucd/doanap/elep/:d :,unje3iau, butpeo) = 3sodezau WUOUﬁz._.n_D“_.m/ 12
,unyeiaw, 3ewsoy BuTsn ,ungelaw, IouelsuT BUTZT]ETITUT = 3sodezau
31313 Aouey aweg <- '@ @ g 1343] B J3ideyd < BuTuOTIdAS < 3an3onu3s pua [oFrd
b papeo] ST 3dZT Wl ulapow ¥Ieqlef < s3uoy Aw%(_ jusdols*1xajuod 6T
Jeydwolysdew 3weu 3A)0S3] 03 I|GEUn < YIEew |eniiTA < s3uny
inos/3xajuod/doyanap/eyep/id3) (ATHuU" zTs-adA3/s301n0s/3xaju0d/do]anap/e3ep/io) Au.xwu. " _”._””_mﬂ._”(_ u._.__muu.xmu._.._ou 81
(sbe3}s puodas) sjuoy uiapow utie) Butpeojaid < s3uoy .
- ATYW/3x23U00/x334pd/dew/s3uoy /3X33UDI- JUN3 /X33 /3X3IU0D-x33 /do) Inap/e3ep,/ 0] mu\ﬂ(_u._l_mu.(_wu.m IXa3uoo LT
aaT1de ST ua abenfue) = sabenbuet| O—U m@._”Lu.CN#.._“"._n 40} g1
papeolald 10U 3B S1U0L UIIPOW UT1E] = sjuoy
| (do3}" 1ENSTA-3Xx33u03-33135) ST
papeo] do}-|ENSTA-3X33U0D-33TIS = wazshs .ﬁ T
[l
(.
ATHw- dxa-3ju0d woiy papeo) saydied Awos :alemaqg < w31sks ..ﬁ .._>(_u._.,_m ylanol ayl,, = xel W €T
AT dX3-3U02/S32IN0S/31X31u00/do]anap/elep/:d) ‘ c —
! papEeL Kpda-es < vt aJow MQ..M_MMFMWQ_W_“H = W:F..WWHWHWM Wﬁuo._. MM
(- = L
ATYW'30]-3uU0D woly papeo] saydied awos :alemaq < wazshs aposen)iJels\
AT3U* 207 -3U03/5331N05/3x33u0d/doyanap/e3ep,/:3) P 134e3 0T
pSpEO] ATHW'D0]-3U0] = wa3sks [
(-
ATHWM3U-1U0D woly papeo] saydled Iwos :3lemag < wazshs _”0._.u_..nu_. >U_._mu_. QEOMIQHP._”P”_LQFQNLUHLMFW/| 8
ATHUM3U-3U03/5331N05/3x33u03/do)anap/e3ep,/i) L
PapEO] ATHU'MIU-3U0D = wazsks 1x83134018\ 5
ysT16Ua/YsTIBUS $IUT g TT'TT6Z Wy AIMM SE:6T 80'TT'TTBZ :43A 1¥3LU0D g
X33°1ENSTA-3}X33U02-33TIS) _”%(_ u._Lm”_ il
‘pa1qeus STEITAM,
(STEF A24) T18Z96TIOZ-0'TL°0-B329 UOTSI3p “¥3len] ST STYyL| u.xmu.—um:._w(_u_.m:._uh.m—u/ £
- JUx23/%23/3%33U03-%31/d0]3n3p/R1EpP/ 1D, =Juy- - ¥33en] [un | 1X31UD03-X 3w z
¥33°|ENSTA-1X33uU03-331135 jpdoine-- 3xajuod 3drids-- ajesauabojne-- unixjuw=| - x:"@@&:mzwﬂ % T
| _ XY [ENSIN-PEIU0I-3)0s | FRFILUPEII-PRIUOI-YIS _xmu.mEu _m: 'siayojedsip-p § |enppepw § | jusepepw-eanowsp § [enpadweeogqui 7 [enpjoouni-p § [enpsuoissass § [enpjonuoaqols § _m:_.mvo_.:mc._.mw _m: |oop|ing-p 7 _mmu.mu_oonxwu.lﬁ
dp s;ayng =benbuey suondf sjpol malfy yauea§ up3 3J
25 - xay|Ensin-prajuos- s\ Bep\Rsy: @)
y,

Figure 1 Nested lexers in action.

The MS Windows binaries are zipped in wscite.zip, and you can unzip this in any directory you want
as long as you make sure that the binary ends up in your path or as shortcut on your desktop. So, say
that you install SciTE in:

c:\data\system\scite\wscite

You need to add this path to your local path definition. Installing SciTE to some known place has the
advantage that you can move it around. There are no special dependencies on the operating system.

On MS Windows you can for instance install SciTE in:
c:\data\system\scite
and then end up with:
c:\data\system\scite\wscite
and that is the path you need to add to your environment PATH variable.
On linux the files end up in:

/usr/bin
/usr/share/scite

Where the second path is the path we will put more files.

Binaries

When you compile binaries yourself or get them from somewhere you need to make sure that they en
dup in te right place (see previous section): When you're on MS Windows they fly to:

wscite/scite.exe
wscite/scilexer.dll

And on linux then end up in:

/usr/bin/SciTE
/usr/bin/libscintilla.so
/usr/bin/liblexilla.so

Because we only use the official Lua interface methods the lexers should just work, assuming that you
have imported the context/scite-context-user properties file.

Installing the CONTEXT lexers

If you want to use ConTgXt, you need to copy the relevant files from
<texroot>/tex/texmf-context/context/data/scite

to the path were SciTE keeps its property files (*.properties). This is the path we already mentioned.
There should be a file there called SciteGlobal.properties.

So,in the end you get on MS Windows new files in:

:\data\system\scite\wscite
:\data\system\scite\wscite\context
:\data\system\scite\wscite\context\lexer
:\data\system\scite\wscite\context\lexer\themes
:\data\system\scite\wscite\context\lexer\data
:\data\system\scite\wscite\context\documents

O 0O o o0 o0 0

while on linux you get:

/usr/bin/share/
/usr/bin/share/context
/usr/bin/share/context/lexer
/usr/bin/share/context/lexer/themes
/usr/bin/share/context/lexer/data
/usr/bin/share/context/documents

At the end of the SciteGlobal.properties you need to add the following line:
import context/scite-context-user

After this, things should run as expected (given that TgX runs at the console as well).

Fonts

The configuration file defaults to the Dejavu fonts. These free fonts are part of the ConTgXt suite (also
known as the standalone distribution). Of course you can fetch them from http://dejavu-fonts.org
as well. You have to copy them to where your operating system expects them. In the suite they are
available in:

<contextroot>/tex/texmf/fonts/truetype/public/dejavu

Extensions

Just a quick note to some extensions. If you select a part of the text (normally you do this with the
shift key pressed) and you hit Shift-F11, you get a menu with some options. More (robust) ones will
be provided at some point.

Spell checking

If you want to have spell checking, you need have files with correct words on each line. The first line
of a file determines the language:

% language=uk

When you use the external lexers, you need to provide some files. Given that you have a text file with
valid words only, you can run the following script:

mtxrun --script scite --words nl uk

This will convert files with names like spell-nl.txt into Lua files that you need to copy to the

lexers/data path. Spell checking happens realtime when you have the language directive (just add
a bogus character to disable it). Wrong words are colored red, and words that might have a case
problem are colored orange. Recognized words are greyed and words with less than three characters
are ignored.

A spell checking file has to be put in the lexers/data directory and looks as follows (e.g. spell-uk.lua):

return {

["max"1=40,

["min"]=3,

["n"]=151493,

["words"]={
["aardvark"]="aardvark",
["aardvarks"]="aardvarks",
["aardwolf"]="aardwolf",
["aardwolves"]="aardwolves",

}

}

The keys are words that get checked for the given value (which can have uppercase characters). The
word files are not distributed (but they might be at some point).

In the case of internal lexers, the following file is needed:
spell-uk.txt

If you use the traditional lexer, this file is taken from the path determined by the environment variable:
CTXSPELLPATH

As already mentioned, the lpeg lexer expects them in the data path. This is because the Lua instance
that does the lexing is rather minimalistic and lacks some libraries as well as cannot access the main
SciTE state.

Spell checking in txt files is enabled by adding a first line:
[#!-%] language=uk

The first character on that line is one of the four mentioned between square brackets. So,
language=uk

should work. For xml files there are two methods. You can use the following (at the start of the file):
<?xml ... language="uk" 7>

But probably better is to use the next directive just below the usual xml marker line:

<?context-directive editor language uk ?>

Interface selection
In a similar fashion you can drive the interface checking:

% interface=nl

Property files

The internal lexers are controlled by the property files while the external ones are steered with themes.
Unfortunately there is hardly any access to properties from the external lexer code nor can we consult
the file system and/or run programs like mtxrun. This means that we cannot use configuration files in
the ConTgXt distribution directly. Hopefully this changes with future releases.

The external lexers

These are the more advanced lexers. They provide more detail and the ConTgXt lexer also supports
nested MetaPost and Lua. Currently there is no detailed configuration but this might change once
they are stable.

The external lexers operate on documents while the internal ones operate on lines. This can make the
external lexers slow on large documents. We've optimized the code somewhat for speed and memory
consumption but there's only so much one can do. While lexing each change in style needs a small
table but allocating and garbage collecting many small tables comes at a price. Of course in practice
this probably gets unnoticed.!

The external Ipeg lexers work okay with the MS Windows and linux versions of SciTE, but unfortunately
at the time of writing this, the Lua library that is needed is not available for the MacOSX version of
SciTE. Also, due to the fact that the lexing framework is rather isolated, there are some issues that
cannot be addressed in the properly, at least not currently.

In addition to ConTEXt and MetaFun lexing a Lua lexer is also provided so that we can handle ConTgXt
Lua Document (cld) files too. There is also an xml lexer. This one also provides spell checking. The
pdf lexer tries to do a good job on pdf files, but it has some limitations. There is also a simple text file
lexer that does spell checking. Finally there is a lexer for cweb files.

Don't worry if you see an orange rectangle in your TgX or xml document. This indicates that there is a
special space character there, for instance 0xA0, the nonbreakable space. Of course we assume that
you use utf8 as input encoding.

The internal lexers

SciTE has quite some built in lexers. A lexer is responsible for highlighting the syntax of your docu-
ment. The way a TgX file is treated is configured in the file:

tex.properties

You can edit this file to your needs using the menu entry under options in the top bar. In this file, the
following settings apply to the TgX lexer:

lexer.tex.interface.default=0

1 1 wrote the code in 2011 on a more than 5 years old Dell M90 laptop, so I suppose that speed is less an issue now.

lexer.tex.use.keywords=1
lexer.tex.comment.process=0
lexer.tex.auto.if=1

The option lexer.tex.interface.default determines the way keywords are highlighted. You can
control the interface from your document as well, which makes more sense that editing the configu-
ration file each time.

S

s interface=all|tex|nl|en|de|cz|it|ro|latex

The values in the properties file and the keywords in the preamble line have the following meaning:

0 all all commands (preceded by a backslash)

1 tex TEX, e-TgX, pdfTEX, Omega primitives (and macros)
2 nl the dutch ConTgXt interface

3 en the english ConTgXt interface

4 de the german ConTgXt interface

5 cz the czech ConTgXt interface

6 it the italian ConTgXt interface

7 ro the romanian ConTgXt interface

8 latex LTgEX (apart from packages)

The configuration file is set up in such a way that you can easily add more keywords to the lists. The
keywords for the second and higher interfaces are defined in their own properties files. If you're curi-
ous about the way this is configures, you can peek into the property files that start with scite-context.
When you have ConTgXt installed you can generate configuration files with

mtxrun --script interface --scite

You need to make sure that you move the result to the right place so best not mess around with this
command and use the files from the distribution.

Back to the properties in tex.properties. You can disable keyword coloring alltogether with:
lexer.tex.use.keywords=0

but this is only handy for testing purposes. More interesting is that you can influence the way comment
is treated:

lexer.tex.comment.process=0

When set to zero, comment is not interpreted as TgX code and it will come out in a uniform color. But,
when set to one, you will get as much colors as a TgX source. It's a matter of taste what you choose.

The lexer tries to cope with the TgX syntax as good as possible and takes for instance care of the funny
~” notation. A special treatment is applied to so called \if's:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever's will be seen as a command. When set
to zero, only the primitive \if's will be treated. In order not to confuse you, when this property is set
to one, the lexer will not color an \ifwhatever that follows an \newif.

The MetaPost lexer

The MetaPost lexer is set up slightly different from its TgX counterpart, first of all because MetaPost is
more a language that TgX. As with the TgX lexer, we can control the interpretation of identifiers. The
MetaPost specific configuration file is:

metapost.properties
Here you can find properties like:
lexer.metapost.interface.default=1
Instead of editing the configuration file you can control the lexer with the first line in your document:

% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers
1 metapost or mp MetaPost primitives and macros
2 metafun MetaFun macros

Similar to the TgX lexer, you can influence the way comments are handled:
lexer.metapost.comment.process=1

This will interpret comment as MetaPost code, which is not that useful (opposite to TgX, where docu-
mentation is often coded in TgX).

The lexer will color the MetaPost keywords, and, when enabled also additional keywords (like those
of MetaFun). The additional keywords are colored and shown in a slanted font.

The MetaFun keywords are defined in a separate file:
metafun-scite.properties

You can either copy this file to the path where you global properties files lives, or put a copy in the path
of your user properties file. In that case you need to add an entry to the file SciTEUser.properties:

import metafun-scite

The lexer is able to recognize btex-etex and will treat anything in between as just text. The same
happens with strings (between "). Both act on a per line basis.

Using ConTgXt
When mtxrun is in your path, ConTgXt should run out of the box. You can find mtxrun in:
<contextroot>/tex/texmf-mswin/bin

or in a similar path that suits the operating system that you use.

When you hit CTRL-12 your document will be processed. Take a look at the Tools menu to see what
more is provided.

Extensions (using LUA)
When the Lua extensions are loaded, you will see a message in the log pane that looks like:

- see scite-ctx.properties for configuring info
- ctx.spellcheck.wordpath set to ENV(CTXSPELLPATH)

- ctxspellpath set to c:\data\develop\context\spell
- ctx.spellcheck.wordpath expands to c:\data\develop\context\spell

- ctx.wraptext.length is set to 65
- key bindings:

Shift + F11 pop up menu with ctx options

Ctrl + B check spelling

Ctrt + M wrap text (auto indent)

Ctrl + R reset spelling results

Ctrl + I insert template

Ctrl + E open log file

Ctrl + + show language character strip (key might change)

- recognized first lines:

xml <?xml version='1.0' language='nl'
tex % language=nl

This message tells you what extras are available. The language character strip feature is relatively
new and displays buttons at the bottom of the screen for the characters in a (chosen) language. This
is handy when you occasionally have to key in (snippets) of a language you're not familiar with. More
alphabets will be added (we take data from some ConTgXt language relates files).

Templates

It is possible to define (and use) templates. There is a demo file in the distribution called scite-ctx-templates.
You can put a similar file in your working path or one or two levels up from there. If not found, the
default (demo) file will be used. a manu is called up with ctrl-1i.

A template file is a Lua file and looks like this:

-- this is just an example

return {
xml = {
name = "bold",
nature = "inline",
template = "?",
}

{

name
nature
template
b
{
name
nature
template
b
{
name
nature
template
b
{
name
nature
template
b

},
}

10

"emphasized",
"inline",
"?",

"inline",
"inline",
u<m>?</m>n,

"display",
"display",
"$?$",

"itemize",
"display",

"<itemize>\n <item>?</item>\n

In xml sources you can add a line:

<?context-directive job ctxtemplate mytemplates.lua ?>

<item>?</item>\n

<item>?</it

The file will be searched for in the current direct and upto two levels higher. When no file is found the

TeX distribution is checked.

The files scite-ctx-example and scite-ctx-context define the menu commands, like:

command.25.$(file.patterns.example)=insert template

Using SCITE

The following keybindings are available in SciTE. Most of this list is taken from the on-line help pages.

keybinding meaning (taken from the SciTE help file)
Ctrl+Keypad+ magnify text size

Ctrl+Keypad- reduce text size

Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block

Shift+Tab dedent block

Ctrl+BackSpace delete to start of word

Ctrl+Delete delete to end of word

Ctrl+Shift+BackSpace

delete to start of line

11

Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection
Ctrl+End go to end of document; Shift extends selection
Alt+Home go to start of display line; Shift extends selection
Alt+End go to end of display line; Shift extends selection
Ctrl+F2 create or delete a bookmark

F2 go to next bookmark

Ctrl+F3 find selection

Ctrl+Shift+F3 find selection backwards

Ctri+Up scroll up

Ctrl+Down scroll down

Ctri+C copy selection to buffer

Ctrl+V insert content of buffer

Ctri+X copy selection to buffer and delete selection

Ctri+L line cut

Ctrli+Shift+T line copy

Ctri+Shift+L line delete

Ctr+T line transpose with previous

Ctrl+4D line duplicate

Ctri+K find matching preprocessor conditional, skipping nested ones
Ctrli+Shift+K select to matching preprocessor conditional

Ctrl+] find matching preprocessor conditional backwards, skipping nested ones
Ctrl+Shift+] select to matching preprocessor conditional backwards
Ctri+[previous paragraph; Shift extends selection

Ctri+] next paragraph; Shift extends selection

Ctri+Left previous word; Shift extends selection

Ctrl+Right next word; Shift extends selection

Ctri+/ previous word part; Shift extends selection

Ctri+\ next word part; Shift extends selection

F12 / Ctrl+F7
Ctrl+F12 / Ctrl+F7
Alt+F12 / Ctrl+F7

check (or process)
process (run)
process (run) using the luajit v (if applicable)

Affiliation

author Hans Hagen
copyright PRAGMA ADE, Hasselt NL
more info www.pragma-ade.com

www . contextgarden.net
version October 6, 2021

12

