1y
mmmm SCONS

Build your software, better.

SCons4.10.1

User Guide

The SCons Development Team

Version 4.10.1
Copyright © 2004 - 2025 The SCons Foundation
Publication date Released: Sun, 16 Nov 2025 10:51:57 -0700

Table of Contents

(= =0 ST PT T OPPTTR iX
L. SCONS PIINCIPIES ettt et e et e et b e et e b e e et e e e nb s iX

2. HOW t0 USE ThiS GUITEeuiiiiiiiii ettt ettt e et et e e e ne s iX

3. A Caveat About This GUIJE'S COMPIELENESSciiiiiieiiii et e s X

4. ACKNOWIBAGEMENTS ...ttt ettt e et ettt e et et e et e e e e e enb e e eeaaas X
SO0 4 | - o APPSR X

1. Building and INStAlliNg SCONSuuiiiiii ettt e et e e et eeana s 1
L1 INSAliNG PYNON ..ot 1

1.2, INSEATING SCOMNS ...ttt ettt e et e ettt e et e e e et e e b et e e e e eneas 2

1.3. Using SCons Without INSEaIlINGc..uniiiiiieiiii e 3

1.4. Running Multiple Versions of SCoNns Side-by-Sideoviiiiiiiiiiiiii e 3

2. SIMPIE BUIIAS ...ttt e et e et e et e s 5
2.1. Building SImple C / CH+ PrOgramS.cccuuuiiiiiiieeeiii ettt ettt e e et e e e et eeena e aees 5

2.2. BUIldiNG OBJECE FIIES ..ottt e ee e eees 6

2.3. SIMPIE JAVA BUILAS ..ot e et 7

2.4, Cleaning Up ATLEr @ BUITOooouuiiiiii et e e e eaeens 7

25. The SCONST T UCT Fle e ettt 8
25.1. SConst ruct Files Are Python SCripESccuuiiiiiiiiiiiiii e 8

2.5.2. SCons Builders Are Order-INdependentcooouuiiieiiiiieieii e 9

2.6. Making the SCons Output Less VErDOSEuiiiiiiiiii e 9

3. Less Simple Things to DO With BUITAScooiiiiiiiiii e 11
3.1. Specifying the Name of the Target (OULPUL) Fileuiiiiiiii e 11

3.2. Compiling MUItIple SOUICE FlESuiiiiii e e 12

3.3. Making alist of fileSWith G 0D ... e 12

3.4. Specifying Single Files VS, LiStS Of FIlESiiiiiiiiiii e 13

3.5. Making Lists Of Files EaSier 10 REAcouuiiiiiiiiieiiiii ettt 14

3.6, KEYWOIA ATQUIMIENTS .oettieiiiti ettt e et e ettt e e et e e ettt e e et et e e et et e e e e et e e e e ebaeas 14

3.7. Compiling MUIIPIE PrOgraMScouuuiiiiiie ettt et e e e e e 15

3.8. Sharing Source Files Between MUltiple Programsoiceeiiiiieiiiiiiee e 15

4. Building and Linking With LIDIariEeScooeuiiiiiiiii e e e e e e eeees 17
A1, BUIlAING LIBrariES ...t 17
4.1.1. Building Libraries From Source Code or Object FIlesccooiiiiiiiiiiiiiiii e 18

4.1.2. Building Static Libraries Explicitly: the St at i cLi brary Builderccc.ooovviiiiiiinnnnen. 18

4.1.3. Building Shared (DLL) Libraries: the Shar edLi brary Buildercccooiviiiiiiiiiiinnnnnn. 18

4.2, LinKing WIth LIDIariESeiiiiii ettt eenees 19

4.3. Finding Libraries: the $L1 BPATH Construction Variablecccooiiiiiiiiiiiiiineeceeeiii e 20

I N oo (S @ 1= ot £ SO T U PPTRPPPPT 21
5.1. Builder Methods Return Lists of Target NOUESociiiiiiiiiiiiiiiciiii e 21

5.2. Explicitly Creating File and Directory NOUESccoeuuiiiiiiiiieiiiii e 22

5.3. Printing NOA@ File NBMESottt e e e e e e enaes 22

5.4. Using a Node's File NamMe 8S @ SINGcccvuuiiiiiiiaiiii ettt 23

5.5. Get Bui | dPat h: Getting the Path From aNode or SINgcc.vuvieiiiiiiiiiiiiee e 23

B. DEPENUENCIES ... iieitie ettt ettt ettt ettt ettt ettt e e e e e 25
6.1. Deciding When an Input File Has Changed: the Deci der FUNCtONc.ocoeviiiieiiiiinieiiiiineeeens 25
6.1.1. Using Content Signatures to Decide if aFile Has Changedcccooovviiiiiiniiiiiiiniccee, 26

6.1.2. Using Time Stamps to Decide If aFile Has Changedcoovveiiiiiiieiiiiiic e 27

6.1.3. Deciding If aFile Has Changed Using Both MD Signatures and Time Stampsc......... 28

6.1.4. Extending SCons: Writing Y our Own Custom Deci der Functioncccooviiveiinnennnn. 28

6.1.5. Mixing Different Ways of Deciding If aFile Has Changedccccooiviiiiiiiiiiiiinienennnn. 30

6.2. Implicit Dependencies. The $CPPPATH Construction Variable ..., 31

6.3. Caching IMPliCit DEPENAENCIESeiiiti ittt ettt ettt e e et e et e e e e nb e e e eebnaeeeens 32

~

'—‘—' SCONS iii

6.3.1. The--inplicit-deps-changed Optionc.ccooiiiiiiiiiiiiiii e 33

6.3.2. The--inplicit-deps-unchanged Optionccccceiiiiiiiiiiiiieii e 33
6.4. Explicit Dependencies: the Depends FUNCHONcooiiiiiiiiiii i e 33
6.5. Dependencies From External Files: the Par seDepends FUNCLiONcccccciviiiiiiiiiieiiineciieenen, 34
6.6. Ignoring Dependencies: the | gnor e FUNCHIONcoouiiiiiiiiiic e 35
6.7. Order-Only Dependencies; the Requi r €S FUNCIONccoooviiiiiiiiiiiccie e 36
6.8. The Al WaySBUI | d FUNCHIONiiieiiiici e e e e e e e e e e 38
A =071 (0000101 PP 40
7.1. Using Values From the External ENVIFONMENTccouiiiiiiiiiiieiie e e e e e 41
7.2. CONSIIUCHION ENVIFONMENESutiiiiiiiieeiiiii et e e e et e et e e et e e et s e e e et e e e e et e e e e ern s 42
7.2.1. Creating a Construction Environment: the Envi r onment Functionccooceeieeine. 42
7.2.2. Fetching Vaues From a Construction EnVironmentccocoieeiiiiiiiniiii e 42
7.2.3. Expanding Values From a Construction Environment: the subst Method 44
7.2.4. Handling Problems With Value Expansion (advanced topiC)cccoccciviviiiieiiiieiiieciieennn, 44
7.2.5. Controlling the Default Construction Environment: the Def aul t Envi r onment Function
... 45
7.2.6. Multiple Construction ENVIFONMENEScivuieiiiiiiii e e eeeeee et e et e e e e e e e aane e 46
7.2.7. Making Copies of Construction Environments: the Cl one Methodccoeeiiieninnils 47
7.2.8. Replacing Values: the Repl ace Methodcooooviiiiiiiii e, 48
7.2.9. Setting Values Only If They're Not Already Defined: the Set Def aul t Method 49
7.2.10. Appending to the End of Values: the Append Methodcccoooiiiiiiiiiiniiis 50
7.2.11. Appending Unique Values. the AppendUni que Methodcooveiiiiiiiin e, 50
7.2.12. Prepending to the Beginning of Values: the Pr epend Methodcoooeiiiiiiiienennnn, 51
7.2.13. Prepending Unique Values. the Pr ependUni que Methodcoocoiiiiiiiiiiincieeennn, 51
7.2.14. Overriding Construction Variable SEttiNgScoovviviiiiiiiicii e 51
7.3. Controlling the Execution Environment for Issued Commandscccoeeeiiieiiiiiiiiiecinieee e 53
7.3.1. Propagating PATH From the External ENVIironmentccocoiiiiiiiiiiiiieiin e 54
7.3.2. Adding to PATH Values in the Execution EnNVIronmentccoovvviiieiiiieeiin e, 54
7.4. Using the toolpath for external TOOISc..oiiiiiiiiiii e e e 54
7.4.1. The default tool Search Pathccoveiiiii e 54
7.4.2. Providing an external directory to toolpathccooooiiiiiiiiiii 55
7.4.3. Nested Tools within a toolpath (advanced tOpIiC)oeevviiiiiiiiiiiiei e 55
7.4.4. Using sys. pat h withinthetoolpathccoooiii i, 56
7.4.5. Using the PyPackageDi r function to add to thetoolpathcccoooviiiiiiiin . 56
8. Automatically Putting Command-line Options into their Construction Variablescccccccoevviiiiiinennnnn. 58
8.1. Merging Options into the Environment: the Mer geFl ags Functioncccoooviiiiiiiiinennens 58
8.2. Merging Options While Creating Environment: the par se_f | ags Parameterco.cceveeennnnns 59
8.3. Separating Compile Arguments into their Variables: the Par seFl ags Functionccc.ccov.ii. 60
8.4. Finding Installed Library Information: the Par seConfi g Functioncc.occoeveiiiiiiniiinnecennn. 61
9. Controlling BUIlA OULPULiiiiiiii e e e e e e e e r e e e et e et e e et e e et s e e st e e aan e e st e eeaneeannaees 63
9.1. Providing Build Help: the Hel p FUNCLIONoouiiiiii e 63
9.2. Controlling How SCons Prints Build Commands: the $* COVSTR Variablescccceevviiiiiinnnnns 64
9.3. Providing Build Progress Output: the Pr ogr €Ss FUNCLIONccoviiiiiiiiiiiiiiii e 66
9.4. Printing Detailed Build Status: the Get Bui | dFai | ures FUnctioncccooooiveiiieiiiieiineeennnn, 68
10. Controlling a Build From the Command LiNEccooiuiiiiiiiiii e e e 70
10.1. Command-Ling OPLIONSuuiiiiuiiiiiieiiie e e et et e et e e e e e e e et e e e e et e e et e e et e e et e e eeanaeeen 70
10.1.1. How To Avoid Typing Command-Line Options Each Time: the SCONSFLAGS
Environment Varialeooooiiiiiiiii e 70
10.1.2. Getting Values Set by Command-Line Options: the Get Qpt i on Function 71
10.1.3. Setting Values of Command-Line Options: the Set OQpt i on Functionccceeeevnnnnes 72
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Optionsccccecevvveeee. 73
10.1.5. Adding Custom Command-Line Options. the AddQOpt i on Functionccccceeiieennnne. 74
10.2. Command-Line vari abl e=val ue Build Variablesccccooviiiiiiiiiiiiiiii e, 75
10.2.1. Controlling Command-Line Build Variablescccoooiiiiiiiiii e, 77

Iy
=== SCONS iv

10.2.2. Providing Help for Command-Line Build Variablesc..ccooiiiiiiiiiii s 78

10.2.3. Reading Build Variables From a Fileccoiiiiiiiiiiiii e 78
10.2.4. Pre-Defined Build Variable FUNCHIONSocuuiiiiiiiiiiciis e 79
10.2.5. Adding Multiple Command-Line Build Variablesat ONnceccoevviviiiiiiiiiiiciiineeieeenn, 86

10.2.6. Handling Unknown Command-Line Build Variables: the UnknownVar i abl es Function
... 87
10.3. ComMMANG-LiNg TaIGEIS .ovuuiiiiieiiieii e et e e e e e e e e e e e e e e e et e e et e et s e e et e e anneeeanns 87
10.3.1. Fetching Command-Line Targets: the COVMAND LI NE_TARGETS Variable 87
10.3.2. Controlling the Default Targets: the Def aul t FUNCLIONccocovvviiiiiiiiiiei e, 88

10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUl LD _TARGETS Variable

... 91
11. Installing Files in Other Directories: the l nst al | BUIldercccooeiiiiiiiiiiii e 93
11.1. Installing Multiple FIleS N @ DIFECIOIYuiiiiniiiiiieeiii et e e e e e e e aeaas 94
11.2. Installing a File Under a DIifferent NaMEiiiiiiiiiiiiiii e e e e e e 94
11.3. Installing Multiple Files Under Different NameSc..ooviiiiiiiiiiii e 95
11.4. Installing @ Shared Libraryco.ooiiiiiiiiiii e e e e e e e e e e e aenas 95
12. Platform-Independent File System Manipulationc.cooiiiiiiiiiiiiiiec e e e 96
12.1. Copying Files or Directories: The COPY FaCLOrYccooiiiiiiiiiiiiciie e 96
12.2. Deleting Files or Directories: The Del €t € FaCtOrycouuviiiiiiiii e 97
12.3. Moving (Renaming) Files or Directories: The Move Factoryccooveviiiiiiiiiiiiiiin e, 98
12.4. Updating the Modification Time of a File: The Touch FaCtoryccooevviiiiiiiiiiiinccieeeeeeen, 99
12.5. Creating a Directory: The MKdi I FaCtOryieiiiiiiii i e e e e 99
12.6. Changing File or Directory Permissions. The Chnod FaCtoryccoveviiiiiiiiiiiii e, 100
12.7. Executing an action immediately: the Execut € FUNCLIONcc.oveiiiiiiiiiiiiie e 100
13. Controlling REMOVEl Of TAIGELScvuiiiiieiii i e e e e e e e e e et e et e e e e e eanaas 102
13.1. Preventing target removal during build: the Pr eci ous FUNCLiONcccooeviiiiiiniiineciieecis 102
13.2. Preventing target removal during clean: the NoCl ean FUNCtionccooovviiiiiiniiiiiecneeeennn, 102
13.3. Removing additional files during clean: the Cl ean FUNCLiONccooeviiiiiiiieiiii e, 103
14, HierarchiCal BUILASvuiiiiiiii e e e e e e e e et e e e e et e e e e et s 104
I S0] F=Y o T o) = S 104
14.2. Path Names Are Relative to the SCoNSCri pt DIreCtOryocevviiiiiiieiiieeii e, 105
14.3. Top-Relative Path Names in Subsidiary SConscri pt Flesccooiiiiiiiiiiie e 106
14.4. ADSOIULE Path NBIMES ...t e et e e e et e e e eaa s 106
14.5. Sharing Environments (and Other Variables) Between SConscri pt Filescooooiiiiiiiinnnnnnn. 107
14.5.1. EXPorting VariablESiiieiiii e 107
14.5.2. Importing VariablESiiiiiii e 108
14.5.3. Returning Values From an SConscri pt File ..o 109
15. Separating Source and Build Trees: Variant DIr€CIONESiiviiiiiiiiiiiiieiie e e e 111
15.1. Specifying a Variant Directory Tree as Part of an SConscri pt Calc.ccooveviiiiiiiiiininns 112
15.2. Why SCons Duplicates Source Filesin a Variant Directory Treeovevviveiiiieiiiieiiiiieiiieeeiieens 113
15.3. Telling SCons to Not Duplicate Source Filesin the Variant Directory Treeccoocevvveviieeennnn. 113
15.4. The Vari ant Di 1 FUNCHION ...ooouuiiii et e et e e e 114
15.5. Using Vari ant Di r Withan SConscript Fileooocoiiiiiiiii e, 115
15.6. Using A 0b With Vari @ant Di I ...oouiiii e e e e e eaeas 115
15.7. Variant BUild EXGMPIES ...covuiiiici e e 116
16. Building From Code REPOSITOMNEScuuiiiiieiiieiiii e e e e e e e e e e e e e e e et e e et e e et e e st e e st e eaaeaannaees 118
16.1. The RepoSi t Ory MENOOcovviiiiiii e e e e aaaas 118
16.2. Finding source fileS in FEPOSITONESuuiiiiiiiii e e e e e e e e e e e e aanaees 118
16.3. Finding #i ncl ude fileSin rePOSITONIEScivviiiii e 119
16.3.1. Limitations on #i ncl ude filesin repoSitorieSc.ooveviiiiiiiiiiiii e 120
16.4. Finding the SConst ruct file in repOSItONEScccvvniiiiiiiii e 121
16.5. Finding derived fileS iN FEPOSITONESivvuiiiiiii e e e e e aeaas 121
16.6. Guaranteeing local COpIES Of fIlES ...iuuiiii i e 122
16.7. Using Repository to separate source and build.coiiiiiiiiiiiii e 122

Iy
=== SCONS v

17.

18.
19.
20.

21.

22.

23.
24.

25.

26.

27.

Extending SCons: Writing Your OWN BUIIAErSccouiiiiiiii e 124
17.1. Writing Builders That Execute External CoOmMmMandsScoevviiiiiiieiiiieiiiieeiin e e e e 124
17.2. Attaching a Builder to a Construction ENVIFONMENTcocuiiiiiiiiiiiieiiieec e ee e e e 124
17.3. Letting SCons Handle The File SUFfIXESuiiiiiiiiii e 126
17.4. Builders That Execute Python FUNCLONSoiiiiiiiiiiiciie e e s 126
17.5. Builders That Create Actions USING @ GENEIAIONcevvuieiinieiiiieiiiieeeee e e e e e e e e e eanas 127
17.6. Builders That Modify the Target or Source Lists Using an Emitterc.occoeveiiiiiiniiiiieeennnns 128
17.7. Modifying a Builder by adding an EMIttercooiiiiiiiiiiicii e 129
17.8. Where To Put Your Custom Builders and TOOISccoeuuiiiiiiiiiiiiiiiin e 130

Not Writing a Builder: the Command BUIlAErccoouiiiiiiiiii e e 133

Extending SCons: Pseudo-Builders and the AddMethod functioncccooeeiiiiiiiiiinin e, 135

Extending SCons; Writing YOur OWN SCANNELSciuuuiiiiiieeiieeiieei e esieesteestee st seeanaesateeeaneaennaes 137
20.1. A SImple SCanner EXAMPIEcoouiii i 137
20.2. Adding a search path to a Scanner: Fi ndPat hDi 'Sooiiiiiiiiiic e 139
20.3. Using scanners With BUIIAEIScoouniiiiiiiii e e e e e 139

Multi-Platform Configuration (Autoconf FUNCLIONEIITY)covniiiiniiii e e 141
b2 I IR O 1 o 0 =3 @)1=t (=S 141
21.2. Checking for the Existence of Header Fil€Suviiiiiiiiiiiii e, 142
21.3. Checking for the Availability of @ FUNCLIONoiiiiiiiii e 142
21.4. Checking for the Availability of aLibrarycooooiiiiiiiiii 143
21.5. Checking for the Availability of at ypedef ... 143
21.6. Checking the SIZe Of @ dalalyPecvvvuiiiiieii i e e e e eaeas 144
21.7. Checking for the Presence of @ programc.u.ceieieiii e e e e e e e aanas 144
21.8. Extending SCons: Adding Y our Own Custom Checkscccoeiiiiiiiiiiiiiciini e 144
21.9. Not Configuring When Cleaning TargelSccuuveiiiiiiiieiiii e e e e e e e e e e e e aanas 146

(0= o o 1 oo I S 011 = 147
22.1. Specifying the Derived-File Cache DIreClOrycooiiiiiiiiiiiiei e e 147
22.2. Keeping Build OULPUL CONSISEENTcoviiiiiicii e e e e e e e e e e e e et e e eaeeaens 148
22.3. Not Using the Derived-File Cache for SpecifiC FileScooviiiiiiiii e 148
22.4. Disabling the Derived-File Catheco.iiiiiiiii e 149
22.5. Populating a Derived-File Cache With Already-BUilt FIl€Sooiviiiiiiiiii e 149
22.6. Minimizing Cache Contention: the - - r andomOPLIONoviiiiiiiiiieii e 150
22.7. Using a Custom CaCheDir ClasScicuuiiiiiiiiiiieiiie e e e e e e e e et e e e e et e et e e et e e aanaees 151

y Y = S = = £ 152

0 = (V7= = 11] o PP 154
24.1. Building Java Class Files: the Java BUIldErcooviiiiiiiiii e 154
24.2. How SCons Handles Java DEPENTENCIESiiiiiiiiiiiiiii e e e e e e e e e e e 154
24.3. Building Java Archive (. j ar) Files: the Jar Buildercccooiviiiiiiiiiiiii e, 155
24.4. Building C Header and Stub Files: the JavaHBuUIlderccoooiiiiiiiiini e, 156
24.5. Building RMI Stub and Skeleton Class Files: the RM CBuUIldercocooviiiiiiiiiiiiiincieecis 157

Internationalization and localization With gELEEXEoiviiiiiii i 158
T T 1= = o 0T (= P 158
IS 0] o L o] ()= AP 158

MiSCEIlaNEOUS FUNCHIONAIITYuuiiiii i e e e e e e et e e e e e e e et e e eaneeeaaaas 164
26.1. Verifying the Python Version: the Ensur ePyt honVer si on Functioncccoocviivieien. 164
26.2. Verifying the SCons Version: the Ensur eSConsVer si on Functionccooeeviviiiieiinnennnn. 164
26.3. Accessing SCons Version: the Get SConsVer si on FUNCLONccooceviiiiiiiiiiiieci e, 165
26.4. Explicitly Terminating SCons While Reading SConscr i pt Files: the Exi t Function 165
26.5. Searching for Files: the Fi ndFi | @ FUNCLONcocoviiiiiiiii e 166
26.6. Handling Nested Lists: the Fl at t en FUNCHONcooviiiiiiiiiii e, 167
26.7. Finding the Invocation Directory: the Get LaunchDi r FUNCtioncccoovviiiiiiiiieiiinceinnen, 169
26.8. Declaring Additional Outputs: the Si deEf f ect Functioncccoooeiiiiiiiiiiiii e, 169
26.9. Using Python Virtual ENVIFONMENESuiiiiiiiiii e e e e e e e e eaeas 172

Using SCons with other build tO0ISiiiiiiiii e 173

Iy
=== SCONS vi

27.1. Creating a Compilation Datalasec..oeiviiiiiiiieii e 173

47 N[o= W =10 1 (o I = 0 T= = o G PP 175
22 T I (010 o] == aTo o) oo 177
28.1. Why is That Target Being Rebuilt? the - - debug=expl ai n Optionccoooeviiiiiiiiiiiieeinns 177
28.2. What's in That Construction Environment? the Dunp Methodcccooiiiiiiiiiiiieen, 179
28.3. What Dependencies Does SCons Know About?the--tree Optionc.cccovvviiiiiiiiieiiineiineens 184
28.4. How is SCons Constructing the Command Lines It Executes? the - - debug=pr esub Option 190
28.5. Where is SCons Searching for Libraries? the - - debug=fi ndl i bs Optioncc.ccoen. 190
28.6. Where is SCons Blowing Up? the - - debug=st ackt race Optioncccoceciveviiieiiiiiennnnnnns 191
28.7. How is SCons Making Its Decisions? the - - t askmast ertrace Optionccccceeveviieennnnnn. 191
28.8. Watch SCons prepare targets for building: the - - debug=pr epar e Optionc..ceevevinns 193
28.9. Why is afile disappearing? the - - debug=dupl i cat e Optionccooveiiiiiiiiiinieeeeen, 194
28.10. KEED It SIMPIE oot 194
A. CONSITUCHION VaBDIES ...t et e e et e e ettt e e e e et reeeettaeeeeranaeaeees 195
2 ST o (= PSP 270
3 1o S PPRPPIN: 300
D. Functions and ENvironment MEthOOSoiiiiiiiiiiiiii e e e 316
[o =g To [T o R @0 T) N I S T PP 357

Iy
=== SCONS vii

List of Examples

E.1. Wildcard globbing to create alist Of fIilenamesoooiiiiiiiiii e 357
E.2. Filename extension SUBSHITULIONiiiiiiiiiii et e 357
E.3. Appending a path prefix to alist of filleNamMEScooouuiiiiiii e 357
E.4. Substituting a path prefix with another 0Ne ... 357
E.5. Filtering a filename list to exclude/retain only a specific set of eXtensionsccceeiveveiiiieiiiiiiieeennnn, 357
E.6. The "backtick function": run a shell command and capture the QULPULccooviiiiiiiiiiieiiiiiieeeiiieees 357
E.7. Generating source code: how code can be generated and used by SCoNScoovviiiiiiiiiiiiiien, 358
~

'—‘—' SCONS viii

SCons Principles

Preface

Thank you for taking the time to read about SCons. SCons is a modern software construction tool - a software utility
for building software (or other files) and keeping built software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the Python
programming language. Thisisin contrast to most alternative build tools, which typically invent a new language to
configure the build. SCons still has a learning curve, of course, because you have to know what functions to call to
set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a
Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than
the cryptic languages of other build tools, which are usually invented by programmers for other programmers. Thisis
in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a
real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers
to do more complicated things with builds, as necessary.

1. SCons Principles

There are afew overriding principles the SCons team tries to follow in the design and implementation.

Correctness
First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance alittle.
We strive to guarantee the build is correct regardless of how the software being built is structured, how it may
have been written, or how unusual the tools are that build it.

Performance
Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever
we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make
it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end
cases for a speedier build in the usual cases.

Convenience
SConstriesto do as much for you out of the box as reasonable, including detecting the right tools on your system
and using them correctly to build the software.

In anutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a minimum of
hassles.

2. How to Use this Guide

This guide intends to coach you how to use SCons effectively and efficiently, by providing a range of examples and
usage scenarios. Assuch it is not exactly atutorial (as usually those build a single example topic from start to finish),
but if you are just starting with SConsit is recommended you step through thefirst 10 chaptersin sequence as thiswill
giveasolid grounding in the principles of working with SCons. If you follow that trail, you can feel freetoinitialy skip
sections on extending SCons, such as Writing your own Decider Function, and come back to those if the need arises.

The remaining chapters cover more advanced topics that not all build systems will need, and can be used in more of
asingle-topic way, to read if you find you need that particular information.

If you are viewing an html version of this Guide, there are many hyperlinks present that you can follow to get more
details if you want them, as the User Guide intentionally does not attempt to provide every detail, to allow smoother
study of the basics. It may also be useful to keep the SCons man page open in a separate browser tab or window to
refer to as a complement to this Guide, which can avoid some jumping back and forth. The four important manpage

Iy
=== SCONS iX

A Caveat About This Guide's Compl eteness

sections describiing the of construction variables, builders, tools and environment methods are actually duplicated as
appendices in the User Guide, to avoid inter-document links.

3. A Caveat About This Guide's Completeness

SCons is a volunteer-run open source project. As such, the SCons documentation isn't dways completely up-to-date
with al the available features - somehow it's almost harder to write high quality, easy to use documentation than it
is to implement a feature in software. In other words, there may be alot that SCons can do that isn't yet covered in
this User's Guide.

Although this User's Guide may not be as complete as it could be, the development process does emphasize making
surethat the SCons man pageiskept up-to-date with new features. So if you'retrying to figure out how to do something
that SCons supports but can't find enough (or any) information here, it would be worth your while to look at the man
pageto seeif theinformation is covered there. And if you do, maybe you'd even consider contributing a section to the
User's Guide so the next person looking for that information won't have to go through the same thing...?

4. Acknowledgements

SCons would not exist without a lot of help from alot of people, many of whom may not even be aware that they
helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based
Constool which Bob first rel eased to the world back around 1996. Bob'swork on Cons classic provided the underlying
architecture and model of specifying a build configuration using areal scripting language. My real-world experience
working on Cons informed many of the design decisions in SCons, including the improved parallel build support,
making Builder objects easily definable by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry
design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture
with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a
tool without the energy, enthusiasm and time peopl e have contributed over the past few years. The"coreteam” of Chad
Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they
get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine
has given SCons avastly superior parallel build model; Charles has been the master of the crucial Node infrastructure;
Christoph'swork on the Configureinfrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Specia thanks to David Snopek for contributing his underlying "Autoscons' code that formed the basis of Christoph's
work with the Configure functionality. David was extremely generous in making this code available to SCons, given
that heinitially released it under the GPL and SConsis released under aless-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project
with arobust development methodology from day one, and which showed me how you could integrate incremental
regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language Python, which is the basis not only for the
SConsimplementation, but for the interface itself.

5. Contact

The best way to contact people involved with SCons, is through the SCons mailing lists.

Iy
=== SCONS X

Contact

If you want to ask general questions about how to use SCons send email to <scons- user s@cons. or g>.
If you want to contact the SCons development community directly, send email to <scons- dev@cons. or g>.

For quicker, informal questions, discussion, etc. the project operated a Discord server at https://discord.gg/bXVpWAyY
and aLibera.chat IRC channel at https://web.libera.chat/#scons (the former channel at irc.freenode.net isnow unused).
Certain discussions may also be moved by administrators from mailing list or chat to GitHub Discussions [https:/
github.com/SCons/scons/discussions] for greater permanence and easier finding.

Iy
=== SCONS Xi

https://discord.gg/bXVpWAy
https://web.libera.chat/#scons
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions

1 Building and Installing
SCons

This chapter will take you through the basic steps of installing SCons so you can use it for your projects. Before that,
however, this chapter will also describe the basic steps involved in installing Python on your system, in case that is
necessary. Fortunately, both SCons and Python are easy to install on ailmost any system, and Python already comes
installed on many systems.

1.1. Installing Python

Because SCons is written in the Python programming language, you need to have a Python interpreter available on
your system to use SCons. Before you try to install Python, check to seeif Python is already available on your system
by typing pyt hon -V (capital V') or pyt hon --versi on at your system's command-line prompt. For Linux/
Unix/MacOS/BSD type systems this looks like:

$ python -V
Pyt hon 3.9. 15

If you get aversion like 2.7.x, you may need to try using the name python3 - current SCons no longer works with
Python 2.

Note to Windows users: there are a number of different ways Python can be installed or invoked on Windows, it is
beyond the scope of this guide to unravel all of them. Some have an additional program called the Python launcher
(described, somewhat technically, in PEP 397 [https://www.python.org/dev/peps/pep-0397/]): try using the command
name py instead of python, if that is not available drop back to trying python

C\>py -V
Pyt hon 3.9. 15

If Python is not installed on your system, or is not findable in the current search path, you will see an error message
stating something like" conmmand not found" (on UNIX or Linux) or "' pyt hon' is not recognized
as an internal or external conmand, operable program or batch file" (onWindows
cmd). In that case, you need to either install Python or fix the search path before you can install SCons.

https://www.python.org/dev/peps/pep-0397/
https://www.python.org/dev/peps/pep-0397/

Installing SCons

The link for downloading Python installers (Windows and Mac) from the project's own website is. https://
www.python.org/download. There are useful system-specific entries on setup and usage to be found at: https./
docs.python.org/3/using

For Linux systems, Python is almost certainly available as a supported package, probably installed by default; thisis
often preferred over installing by other means as the system package will be built with carefully chosen optimizations,
and will be kept up to date with bug fixes and security patches. Infact, the Python project itself doesnot build installers
for Linux for thisreason. Many such systems have separate packagesfor Python 2 and Python 3 - make sure the Python
3 packageisinstalled, as the latest SCons requires it. Building from source may still be a useful option if you need a
specific version that is not offered by the distribution you are using.

Recent versions of the Mac no longer come with Python pre-installed; older versions came with a rather out-of-date
version (based on Python 2.7) which is insufficient to run current SCons. The python.org installer can be used on the
Mac, but there are aso other sources such as MacPorts and Homebrew. The Anaconda installation also comes with
abundled Python.

Windows has even more choices. The Python.org installer isatraditional . exe style; the same softwareisalso released
as a Windows application through the Microsoft Store. Several alternative builds also exist such as Chocolatey and
ActiveState, and, again, aversion of Python comes with Anaconda.

SCons will work with Python 3.7 or later. If you need to install Python and have a choice, we recommend using the
most recent Python version available. Newer Python versions have significant improvements that help speed up the
performance of SCons.

1.2. Installing SCons

The recommended way to install SCons is from the Python Package Index (PyPI [https:.//pypi.org/project/SCons/]):
% python -mpip install scons

If you prefer not to install to the Python system location, or do not have privilegesto do so, you can add aflag toinstall
to alocation specific to your own account and Python version:

% python -mpip install --user scons

For those users using Anaconda or Miniconda, use the conda installer instead, so the sconsinstall location will match
the version of Python that system will be using. For example:

% conda install -c conda-forge scons

If you need a specific version of SCons that is different from the current version, pi p has a version option (e.g.
python -mpip install scons==3. 1. 2), or you can follow the instructionsin the following sections.

SCons does comes pre-packaged for installation on many Linux systems. Check your package installation system
to see if there is an up-to-date SCons package available. Many people prefer to install distribution-native packages
if available, as they provide a central point for management and updating; however not al distributions update in a
timely fashion. During the still-ongoing Python 2 to 3 transition, some distributions may still have two SCons packages
available, one which uses Python 2 and one which uses Python 3. Since the latest scons only runs on Python 3, to get
the current version you should choose the Python 3 package.

Iy
=== SCONS 2

https://www.python.org/download
https://www.python.org/download
https://docs.python.org/3/using
https://docs.python.org/3/using
https://pypi.org/project/SCons/
https://pypi.org/project/SCons/

Using SCons Without Installing

1.3. Using SCons Without Installing

Y oudon't actually need to "install" SConsto useit. Nor do you need to "build" it, unlessyou areinterested in producing
the SCons documentation, which does use several tools to produce HTML, PDF and other output formats from files
in the source tree. All you need to do is call the scons. py driver script in alocation that contains an SCons tree,
and it will figure out therest. Y ou can test that like this:

$ python /path/to/unpacked/scripts/scons. py --version

To make use of an uninstalled SCons, the first step is to download either the scons-4.10.1.tar. gz
or scons-4.10. 1. zi p, which are available from the SCons download page at https://scons.org/pages/
download.html. Thereisasoascons- | ocal bundleyou can make use of. It isarranged alittle bit differently, with
the idea that you can include it with your own project if you want people to be able to do builds without having to
download or install SCons. Finally, you can also use a checkout of the git tree from GitHub at alocation to point to.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will
create adirectory called scons- 4. 10. 1, usualy in your local directory. The driver script will be in a subdirectory
named scri pt s, unlessyou are using scons- | ocal , in which case it will be in the top directory. Now you only
need to call scons. py by giving afull or relative path to it in order to use that SCons version.

Note that instructions for older versions may have suggested running pyt hon setup. py install to"build
and install" SCons. This is no longer recommended (in fact, it is not recommended by the wider Python packaging
community for any end-user installations of Python software). There is a set up. py file, but it is only tested and
used for the automated procedure which prepares an SCons bundle for making arelease on PyPl, and even that is not
guaranteed to work in the future.

1.4. Running Multiple Versions of SCons Side-
by-Side

In some cases you may need severa versions of SCons present on a system at the same time - perhaps you have an
older project to build that has not yet been "ported” to a newer SCons version, or maybe you want to test anew SCons
release side-by-side with a previous one before switching over. The use of an "uninstalled" package as described in
the previous section can be of use for this purpose.

Another approach to multiple versions is to create Python virtualenvs, and install different SCons versions in each.
A Python virtual environment is a directory with an isolated set of Python packages, where packages you install/
upgrade/removeinside the environment do not affect anything outsideit, and those you install/upgrade/remove outside
of it do not affect anything inside it. In other words, anything you do with pip in the environment stays in that
environment. The Python standard library provides amodule called venv for creating these (https://docs.python.org/
ellibrary/venv.html), although there are also other tools which provide more precise control of the setup.

Using a virtualenv can be useful even for a single version of SCons, to gain the advantages of having an isolated
environment. It also gets around the problem of not having administrative privileges on a particular system to install
adistribution package or use pip to install to a system location, as the virtualenv is completely under your control.

The following outline shows how this could be set up on a Linux/POSIX system (the syntax will be a bit different
on Windows):

$ create virtual env naned scons3
$ create virtual env naned scons4

Iy
=== SCONS 3

https://scons.org/pages/download.html
https://scons.org/pages/download.html
https://docs.python.org/e/library/venv.html
https://docs.python.org/e/library/venv.html

Running Multiple Versions of SCons Side-by-Side

source scons3/bin/activate

pip install scons==3.1.2

deacti vate

source scons4/ bin/activate

pip install scons

deacti vate

activate a virtual env and run 'scons' to use that version

R R e A T e T T

Iy
=== SCONS 4

2 Simple Builds

The single most important thing you do when writing a build system for your project is to describe the "what": what
you want to build, and which files you want to build it from. And, in fact, smpler builds may need no more. In this
chapter, you will see several examples of very simple build configurations using SCons, which will demonstrate how
easy SCons makes it to build programs on different types of systems.

2.1. Building Simple C/ C++ Programs

Here'sthe ubiquitous "Hello, World!" [https://en.wikipedia.org/wiki/%22Hello, World!%22 program] programin C:

#i ncl ude <stdi 0. h>
i nt
mai n()

{
}

printf("Hello, worldl\n");

And here'show to build it using SCons. Save the code aboveinto hel | o. ¢, and enter the following into afile named
SConstruct :

Program(' hello.c")

This minimal build file gives SCons three key pieces of information: what you want to build (a program); what you
want to call that program (its base name will be hel | 0), and the source file you want it built from (the hel | o. ¢
file). Pr ogr amisaBuilder, an SCons function that you use to instruct SCons about the "what" of your build.

That's it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX,
you'll see something like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Building Object Files

cc -0 hello hello.o
scons: done buil ding targets.

On a Windows system with the Microsoft Visual C++ compiler, you'll see something like:

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

I ink /nologo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

Noticethat SCons deduced quite abit here: it figured out the name of the program to build, including operating system
specific suffixes (hel | o or hel | 0. exe), based off the basename of the source file; it knows an intermediate object
file should be built (hel | 0. 0 or hel | 0. obj); and it knows how to build those things using the compiler that is
appropriate on the system you're using. It was not necessary to instruct SCons about any of those details. Thisis an
example of how SCons makes it easy to write portable software builds.

For the programming languages SCons already knows about, it will mostly just figureit out. Here'sthe "Hello, World!"
example in Fortran:

program hel | o
print *, 'Hello, World!"
end program hell o

Progran(' hello', 'hello.f90")

$ scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

gfortran -o hello.o -c hello.f90
gfortran -o hello hello.o

scons: done buil ding targets.

2.2. Building Object Files

ThePr ogr ambuilder isonly one of many builders(also called abuilder method) that SCons providesto build different
types of files. Another is the Obj ect builder method, which tells SCons to build an object file from the specified
sourcefile:

oject (' hello.c")

Now when you run the scons command to build the program, it will build just the hel | 0. o object file on a POSIX
system:

Iy
=== SCONS 6

Simple Java Builds

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

scons: done buil ding targets.

Andjustthehel | 0. obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
scons: done buil ding targets.

(Note that this guide will not continue to provide duplicate side-by-side POSIX and Windows output for all of the
examples. Just keep in mind that, unless otherwise specified, any of the examples should work equally well on both
types of systems.)

2.3. Simple Java Builds

SCons also makes building with Java extremely easy. Unlike the Pr ogr amand Obj ect builder methods, however,
the Java builder method requires that you specify the name of a destination directory in which you want the class
files placed, followed by the source directory in which the. j ava fileslive:

Java(' cl asses', 'src')

If the sr c directory contains asingle hel | o. j ava file, then the output from running the scons command would
look something like this (on a POSIX system):

% scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

javac -d classes -sourcepath src src/hello.java
scons: done buil ding targets.

Java builds will be covered in much more detail, including building a Java archive (. j ar) and other types of files,
in Chapter 24, Java Builds.

2.4. Cleaning Up After a Build

For cleaning up your build tree, SCons provides a "clean" mode, selected by the - ¢ or - - cl ean option when you
invoke SCons. SCons selects the same set of targets it would in build mode, but instead of building, removes them.
That means you can control what is cleaned in exactly the same way as you control what gets built. If you build the C
example above and then invoke scons - ¢ afterwards, the output on POSIX looks like:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Iy
=== SCONS 7

The SConst r uct File

scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

% scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renmoved hel | 0. 0

Renmoved hel |l o

scons: done cl eani ng targets.

And the output on Windows looks like:

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.
C.\>scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved hel | o. obj

Rermoved hel | 0. exe

scons: done cl eani ng targets.

Notice that SCons changes its output to tell you that it is Cl eaning targets ... and done cl eaning
targets.

2.5. The SConstruct File

If you're used to build systemslike Make you've already figured out that the SConst r uct fileisthe SConsequivalent
of aMakefi | e. Thatis, the SConst r uct fileistheinput file that SCons reads to control the build.

2.5.1. SConst ruct Files Are Python Scripts

Thereis, however, an important difference between an SConst r uct fileand aMakef i | e: the SConst ruct file
is actually a Python script. If you're not already familiar with Python, don't worry. This User's Guide will introduce
you step-by-step to the relatively small amount of Python you'll need to know to be able to use SCons effectively.
And Python isvery easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConst r uct fileusing
Python's commenting convention: everything between a # character and the end of the line will be ignored (unless
the character appears inside a string constant).

Arrange to build the "hell o" program
Program("hell o.c") # "hello.c" is the source file.
Pr ogr am("#goodbye. c") # the # in "#goodbye" does not indicate a comment

Iy
=== SCONS 8

SCons Builders Are Order-Independent

You'll see throughout the remainder of this Guide that being able to use the power of areal scripting language can
greatly simplify the solutions to complex requirements of real-world builds.

2.5.2. SCons Builders Are Order-Independent

One important way in which the SConst r uct file is not exactly like a normal Python script, and is more like a
Makef i | e,isthat the order in which the SCons Builder functions are called in the SConst r uct file does not affect
the order in which SCons actually builds the programs and object files you want it to build. 1. In other words, when
you call the Pr ogr ambuilder (or any other builder method), you're not telling SCons to build the program at that
moment. Instead, you're telling SCons what you want accomplished, and it's up to SCons to figure out how to do that,
and to take those stepsif/when it's necessary. you'll learn more about how SCons decides when building or rebuilding
atarget is necessary in Chapter 6, Dependencies, below.

SCons reflects this distinction between calling a builder method like Pr ogr amand actually building the program
by printing the status messages that indicate when it's "just reading" the SConst r uct file, and when it's actually
building the target files. This is to make it clear when SCons is executing the Python statements that make up the
SConst r uct file, and when SConsis actually executing the commands or other actions to build the necessary files.

Let's clarify thiswith an example. Python hasapr i nt function that prints astring of characters to the screen. If you
put pri nt callsaround the callsto the Pr ogr ambuilder method:

print("Calling Program(' hello.c')")
Progran(' hello.c")

print("Calling Program('goodbye.c')")
Pr ogr anm(' goodbye. c')

print("Finished calling Program()")

Then, when you execute SCons, you will see the output from calling the pri nt function in between the messages
about reading the SConscr i pt files, indicating that is when the Python statements are being executed:

% scons

scons: Readi ng SConscript files ...
Call'ing Progran('hello.c')

Cal I'i ng Progran{' goodbye. c')

Fi ni shed cal I i ng Progran()

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 goodbye.o -c goodbye. c

cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

Notice that SCons built the goodbye program first, even though the "reading SConscri pt " output shows that
Program(' hel |l 0. c') wascaledfirstinthe SConst r uct file.

2.6. Making the SCons Output Less Verbose

You've already seen how SCons prints some messages about what it's doing, surrounding the actual commands used
to build the software:

4n programming parlance, the SConst r uct file is declarative, meaning you tell SCons what you want done and let it figure out the order in
which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.

Iy
=== SCONS 9

Making the SCons Output Less Verbose

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

These messages emphasize the order in which SCons doesits work: all of the configuration files (generically referred
toas SConscr i pt files) are read and executed first, and only then are the target files built. Among other benefits,
these messages help to distinguish between errors that occur while the configuration files are read, and errors that
occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the
- Qoption when invoking SCons:

C.\>scons -Q

cl /Fohello.obj /c hello.c /nol ogo

Iink /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

So this User's Guide can focus on what SConsis actually doing, the - Qoption will be used to remove these messages
from the output of all the remaining examplesin this Guide.

Iy
=== SCONS 10

3 Less Simple Things to Do
With Builds

Of course, most builds are more complicated than in the previous chapter. In this chapter, you will learn about builds
that incorporate multiple source files, and then about building multiple targets that share some source files.

3.1. Specifying the Name of the Target (Output)
File

You've seen that when you call the Pr ogr ambuilder method, it builds the resulting program with the same base
name as the source file. That is, the following call to build an executable program from the hel | 0. ¢ source file will
build an executable program named hel | 0 on POSIX systems, and an executable program named hel | 0. exe on
Windows systems:

Program(' hello.c")

If you want to build a program with a different base name than the base of the source file name (or even the same
name), you simply put the target file name to the | eft of the source file name:

Program(' new_hello', '"hello.c")

SConsrequiresthetarget file namefirst, followed by the sourcefile name, so that the order mimicsthat of an assignment
statement in most programming languages, including Python: "t arget = source fil es". For an dternative
way to supply thisinformation, see Section 3.6, “Keyword Arguments”.

Now SCons will build an executable program named new_hel | o when run on aPOSIX system:

% scons -Q
cc -0 hello.o -c hello.c
cc -o new hello hello.o

And SCons will build an executable program named new_hel | 0. exe when run on a Windows system:

C.\>scons -Q

Compiling Multiple Source Files

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: new_hel | 0. exe hel |l 0. obj
enbedMani f est ExeCheck(target, source, env)

3.2. Compiling Multiple Source Files

You've just seen how to configure SConsto compile a program from asingle sourcefile. It's more common, of course,
that you'll need to build a program from many input source files, not just one. To do this, you need to put the source
filesin a Python list (enclosed in square brackets), like so:

Program(['prog.c', 'filel.c', '"file2.c'])

A build of the above example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 prog prog.o filel.o file2.0

Notice that SCons deduces the output program name from the first source file specified in the list--that is, because the
first source filewas pr og. ¢, SCons will nhame the resulting program pr og (or pr og. exe on a Windows system).
If you want to specify a different program name, then (as described in the previous section) you slide the list of source
files over to the right to make room for the output program file name. Here is the updated example:

Program(' programi, ['prog.c', 'filel.c', 'file2.c'])

On Linux, abuild of this example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 programprog.o filel.o file2.0

Or on Windows:

C.\>scons -Q

cl /Fofilel.obj /c filel.c /nol ogo

cl /Fofile2.0bj /c file2.c /nol ogo

cl /Foprog.obj /c prog.c /nol ogo

link /nol ogo /OUT: program exe prog.obj filel.obj file2.obj
enbedMani f est ExeCheck(target, source, env)

3.3. Making a list of files with A ob

You can aso use the @ ob function to find al files matching a certain template, using the standard shell pattern
matching characters* (to match everything), ? (to match asingle character) and[abc] tomatchany of a,borc.[!
abc] isalso supported, to match any character except a, b or ¢. This makes many multi-source-file builds quite easy:

Iy
=== SCONS 12

Specifying Single Files Vs. Lists of Files

Program(' programi, G ob('*.c'))

A ob has powerful capahilities - it matches even if the file does not currently exist, but SCons can determine that it
would exist after abuild. You will meet it again reading about variant directories (see Chapter 15, Separating Source
and Build Trees: Variant Directories) and repositories (see Chapter 16, Building From Code Repositories).

3.4. Specifying Single Files Vs. Lists of Files

Y ou've now seen two ways to specify the source for a program, one with alist of files:
Program('hello', ['filel.c', 'file2.c'])

And onewith asinglefile:

Program(' hell o', '"hello.c")

You can actually put asingle file namein alist, too, which you might prefer just for the sake of consistency:
Program(' hello', ['hello.c'])

SCons functionswill accept asingle file name in either form. In fact, internally, SConstreats all input aslists of files,
but allows you to omit the square brackets to cut down alittle on the typing when there's only a single file name.

I mportant

Although SCons functions are forgiving about whether or not you use astring vs. alist for asingle file name,
Pythonitself is stricter about treating listsand strings differently. So where SCons allows either astring or list:

The following two calls both work correctly:
Progran(' progranl', 'prograntl.c')
Progran(' progran®', ['progranR.c'])

Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect results:

comon_sources = ['filel.c', "file2.c']

THE FOLLOWN NG | S | NCORRECT AND GENERATES A PYTHON ERROR
BECAUSE IT TRIES TO ADD A STRING TO A LI ST:
Program(' progranil', comon_sources + 'progranil.c')

The foll owi ng works correctly, because it's adding two
lists together to make another |ist.
Program(' progran®', common_sources + ['progranR.c'])

Iy
=== SCONS 13

Making Lists of Files Easier to Read

3.5. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either
single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long.
Fortunately, SCons and Python provide a number of waysto make sure that the SConst r uct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Spl i t function that takes a quoted list of
file names, with the names separated by spaces or other white-space characters, and turnsit into alist of separate file
names. Using the Spl i t function turns the previous example into:

Progran(' programi, Split('main.c filel.c file2.c'))

(If you're already familiar with Python, you'll have realized that this is similar to the spl i t () method of Python
string objects. Unlike the spl i t () method, however, the Spl i t function does not require a string as input and
will wrap up a single non-string object in alist, or return its argument untouched if it's already a list. This comesin
handy as a way to make sure arbitrary values can be passed to SCons functions without having to check the type of
the variable by hand.)

Putting the call to the Spl i t function inside the Pr ogr amcall can also be a little unwieldy. A more readable

alternative is to assign the output from the Spl i t call to a variable name, and then use the variable when calling
the Pr ogr amfunction:

src_files = Split('min.c filel.c file2.c")
Program(' program, src_files)

Lastly, the Spl i t function doesn't care how much white space separates the file names in the quoted string. This
alows you to create lists of file names that span multiple lines, which often makes for easier editing:

src_files = Split("""

mai n. ¢

filel.c

file2.c
")

Program(' program, src_files)

(Notethisexample usesthe Python "triple-quote” syntax, which allows a string to span multiple lines. The three quotes
can be either single or double quotes as long as they match.)

3.6. Keyword Arguments

SCons also alows you to identify the output file and input source files using Python keyword argumentst ar get and
sour ce. A keyword argument is an argument preceded by an identifier, of the form nane=val ue, in afunction
call. The usage looks like this exampl e:

src_files = Split('"min.c filel.c file2.c")
Program(target = program, source=src_files)

Iy
=== SCONS 14

Compiling Multiple Programs

Because the keywords explicitly identify what each argument is, the order does not matter and you can reverse it if
you prefer:

src_files = Split('min.c filel.c file2.c")
Program(source=src_files, target="program)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which
you specify them when using keywords, are purely personal choices; SCons functions the same regardless.

3.7. Compiling Multiple Programs

In order to compile multiple programs within the same SConst r uct file, simply cal the Pr ogr ammethod multiple
times, once for each program you need to build:

Program(' foo.c')
Program('bar', ["barl.c', 'bar2.c'])

SCons would then build the programs as follows:

% scons -Q

cc -0 barl.o0 -c barl.c
cc -0 bar2.0 -c bar2.c
cc -0 bar barl.o0 bar2.o0
cc -o foo.o -c foo.c

cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which you specify them in the
SConst r uct file. SCons does, however, recognize that the individual object files must be built before the resulting
program can be built. (Thiswill be covered in greater detail in Chapter 6, Dependencies, below.)

3.8. Sharing Source Files Between Multiple
Programs

It's common to re-use code by sharing source files between multiple programs. Oneway to do thisisto create alibrary
from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in
Chapter 4, Building and Linking with Libraries, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple programsis simply
to include the common filesin the lists of source files for each program:

Program(Split('foo.c conmpbnl.c common2.c'))
Program('bar', Split('barl.c bar2.c comobnl.c comopn2.c'))

SCons recognizes that the object files for the commonl. ¢ and cormon2. ¢ source files each need to be built only
once, even though the resulting object files are each linked in to both of the resulting executable programs:

% scons -Q

Iy
=== SCONS 15

Sharing Source Files Between Multiple Programs

cc -0 barl.o0 -c barl.c

cc -0 bar2.0 -c bar2.c

cc -0 commpnl.o -c¢ commonl. c

CC -0 comDNn2.0 -C conmobn2.c

cc -0 bar barl.o0 bar2.o0 conmpnl.o comDn2. 0
cc -o foo.o -c foo.c

cc -o foo foo.o compnl. o conmon2. o

If two or more programs share alot of common source files, repeating the common filesin the list for each program
can be a maintenance problem when you need to change the list of common files. Y ou can simplify this by creating a
separate Python list to hold the common file names, and concatenating it with other lists using the Python + operator:

comon = ['comonl.c', 'common2.c']
foo files = ['foo.c'] + conmon
bar files = ['"barl.c', 'bar2.c'] + common

Program('foo', foo files)
Progran(' bar', bar_files)

Thisisfunctionally equivalent to the previous example.

Iy
=== SCONS 16

4 Building and Linking with
Libraries

It's often useful to organize large software projects by collecting parts of the software into one or morelibraries. SCons
makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

Y ou build your own libraries by specifying Li br ar y instead of Pr ogr am
Library('foo', ['fl.c', '"f2.¢c', '"f3.c'])

SConsusesthe appropriatelibrary prefix and suffix for your system. So on POSIX or Linux systems, the above example
would build as follows (although ranlib may not be called on al systems):

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0
ranlib |ibfoo.a

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nologo

lib /nologo /QUT:foo.lib f1.0bj f2.o0obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target
library name, SConswill deduce onefrom the name of thefirst sourcefile specified, and SConswill add an appropriate
file prefix and suffix if you leave them off.

Building Libraries From Source Code or Object Files

4.1.1. Building Libraries From Source Code or Object
Files

The previous example shows building alibrary from alist of source files. Y ou can, however, aso givethelLi br ary
call object files, and it will correctly realize they are object files. In fact, you can arbitrarily mix source code files and
object filesin the source list:

Library('foo', ['fl.c', '"f2.0', '"f3.¢c', 'f4.0'])

And SCons realizes that only the source code files must be compiled into object files before creating the final library:

% scons -Q

cc -o fl.o -c fl.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0 f4.0
ranlib |ibfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5, Node Objects,
below, for information about how you can build object files explicitly and include the built filesin alibrary.

4.1.2. Building Static Libraries Explicitly: the
StaticLi brary Builder

The Li br ary function builds a traditional static library. If you want to be explicit about the type of library being
built, you can use the synonym St at i cLi br ary functioninstead of Li brary:

StaticLibrary('foo', ['fl.c', 'f2.¢c', 'f3.¢c'])

Thereisno functional difference betweenthe St at i cLi brary and Li br ary functions.

4.1.3. Building Shared (DLL) Libraries: the
Shar edLi br ary Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the
Shar edLi br ary function:

Shar edLi brary(' foo', ['fl.c', 'f2.¢', 'f3.¢c'])

The output on POSIX:

% scons -Q

cc -o fl.os -c fl.c

cc -o f2.0s -c f2.¢c

cc -o f3.0s -c f3.c

cc -0 libfoo.so -shared f1.0s f2.0s f3.o0s

And the output on Windows:

Iy
=== SCONS 18

Linking with Libraries

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

link /nologo /dll /out:foo.dll /inplib:foo.lib f1.0bj f2.0bj f3.obj
RegSer ver Func(target, source, env)

enmbedMani f est D | Check(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the - shar ed option for a POSIX
compilation, and the/ dl | option on Windows.

4.2. Linking with Libraries

Usually, you build alibrary because you want to link it with one or more programs. Y ou link libraries with a program
by specifying the libraries in the $L1 BS construction variable, and by specifying the directory in which the library
will be found inthe $LI BPATH construction variable:

Library('foo', ['fl.c', '"f2.¢c', '"f3.¢c'])
Program(' prog.c', LIBS=['foo', 'bar'], LIBPATH=".")

Notice, of course, that you don't need to specify alibrary prefix (likel i b) or suffix (like. a or. |i b). SCons uses
the correct prefix or suffix for the current system.

On aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0
ranlib |ibfoo.a

CC -0 prog.o -c prog.c

CC -0 prog prog.o -L. -Ifoo -Ibar

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.obj /c f1l.c /nol ogo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

lib /nologo /QUT:foo.lib f1.0bj f2.0bj f3.o0bj

cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LIBPATH:. foo.lib bar.lib prog. obj
enbedMani f est ExeCheck(target, source, env)

Asusual, notice that SCons has taken care of constructing the correct command linesto link with the specified library
on each system.

Note also that, if you only have asingle library to link with, you can specify the library namein single string, instead
of aPython list, so that:

Program(' prog.c', LIBS=' foo', LIBPATH=".")

Iy
=== SCONS 19

Finding Libraries: the $LI BPATH Construction Variable

is equivaent to:
Program(' prog.c', LIBS=['foo0'], LIBPATH=".")

Thisissimilar to the way that SCons handles either a string or alist to specify a single source file.

4.3. Finding Libraries: the $LI1 BPATH
Construction Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how to look for
libraries in directories that you specify with the $LI BPATH construction variable. $L1 BPATH consists of a list of
directory names, like so:

Program(' prog.c', LIBS = "'m,
LI BPATH = ['/usr/lib', '/usr/local/lib'])

Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory
names in asingle string, separated by the system-specific path separator character: acolon on POSIX systems:

LI BPATH = ' /usr/lib:/usr/local/lib'
or a semi-colon on Windows systems:
LI BPATH = 'C:\\lib; D:\\Ii b’

(Note that Python requires that the backslash separators in a Windows path name be escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries in the same
directories as SCons. So on aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q
CC -0 prog.o -c prog.c
CC -0 prog prog.o -L/usr/lib -L/usr/local/lib -Im

On aWindows system, a build of the above example would look like:
C.\>scons -Q
cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LI BPATH: \usr\lib /LIBPATH: \usr\local\lib mlib prog.obj
enbedMani f est ExeCheck(target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line options.

Iy
=== SCONS 20

5 Node Objects

Internally, SConsrepresents all of the files and directories it knows about as Nodes. These internal objects (not object
files) can be used in avariety of waysto make your SConscr i pt files portable and easy to read.

5.1. Builder Methods Return Lists of Target
Nodes

All builder methods return alist of Node objects that identify the target file or files that will be built. These returned
Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different options. This
would mean calling the Obj ect builder once for each object file, specifying the desired options:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
nj ect (' goodbye. c', CCFLAGS=' - DGOODBYE')

One way to combine these object files into the resulting program would be to cal the Pr ogr ambuilder with the
names of the object files listed as sources:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
oj ect (' goodbye. ¢c', CCFLAGS=' - DGOODBYE')
Program([' hel l 0. 0', 'goodbye.o'])

The problem with specifying the names as stringsisthat our SConst r uct fileisno longer portable across operating
systems. It won't, for example, work on Windows because the object files there would be named hel | 0. obj and
goodbye. obj , not hel | 0. 0 and goodbye. o.

A better solution is to assign the lists of targets returned by the calls to the Obj ect builder to variables, which we
can then concatenate in our call to the Pr ogr ambuilder:

hello_ list = Object(' hello.c', CCFLAGS='-DHELLO)
goodbye |ist = Object (' goodbye.c', CCFLAGS='- DGOODBYE')
Program(hell o_list + goodbye |ist)

Explicitly Creating File and Directory Nodes

Thismakes our SConst r uct file portable again, the build output on Linux looking like:

% scons -Q

cc -0 goodbye.o -c - DGOODBYE goodbye. c
cc -0 hello.o -c -DHELLO hello.c

cc -0 hello hello.o goodbye. o

And on Windows:

C.\>scons -Q

cl / Fogoodbye. obj /c goodbye.c - DGOODBYE

cl /Fohello.obj /c hello.c -DHELLO

link /nologo /QUT: hel | 0. exe hel | 0. obj goodbye. obj
enmbedMani f est ExeCheck(target, source, env)

WEe'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide.

5.2. Explicitly Creating File and Directory
Nodes

It's worth mentioning here that SCons maintains a clear distinction between Nodes that represent files and Nodes that
represent directories. SCons supportsFi | e and Di r functions that, respectively, return afile or directory Node:

hello c = File('hello.c")
Program(hel | o_c)

classes = Dir('classes')
Java(cl asses, 'src')

Normally, you don't need to call Fi | e or Di r directly, because calling a builder method automatically trests strings
as the names of files or directories, and translates them into the Node objects for you. The Fi | e and Di r functions
can come in handy in situations where you need to explicitly instruct SCons about the type of Node being passed to a
builder or other function, or unambiguously refer to a specific file in adirectory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance whether
it'safile or adirectory. For those situations, SCons also supports an Ent r y function, which returns a Node that can
represent either afile or adirectory.

xyzzy = Entry('xyzzy')

Thereturned xyzzy Node will be turned into afile or directory Node the first timeit is used by a builder method or
other function that requires one vs. the other.

5.3. Printing Node File Names

One of the most common things you can do with aNode is useit to print the file name that the node represents. Keep
in mind, though, that because the object returned by a builder call isalist of Nodes, you must use Python subscripts
to fetch individual Nodes from the list. For example, the following SConst r uct file:

Iy
=== SCONS 22

Using aNode's File Name as a String

object list = Cbject('hello.c")

program|ist = Progran(object list)

print("The object file is: %" %bject |ist[0])
print("The programfile is: %" %rogramlist[0])

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The programfile is: hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

And the following file names on a Windows system:

C.\>scons -Q

The object file is: hello.obj

The programfile is: hello.exe

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

Note that in the above example, the obj ect _|i st [0] extractsan actual Node object from the list, and the Python
pri nt function converts the object to a string for printing.

5.4. Using a Node's File Name as a String

Printing aNode's name as described in the previous section works because the string representation of aNode object
is the name of thefile. If you want to do something other than print the name of the file, you can fetch it by using the
built-in Python st r function. For example, if you want to use the Python os. pat h. exi st s to figure out whether
afile exists whilethe SConst r uct fileisbeing read and executed, you can fetch the string as follows:

i mport os.path
programlist = Progran(' hello.c')
program nane = str(programlist[0])
i f not os.path. exists(program nane):
print ("% does not exist!"%rogram nane)

Which executes as follows on a POSIX system:

% scons -Q

hell o does not exi st!

cc -o hello.o -c hello.c
cc -o hello hello.o

5.5. Get Bui | dPat h: Getting the Path From a
Node or String

env. Get Bui | dPat h(file_or _Iist) returnsthe path of aNode or astring representing apath. It can also take
alist of Nodes and/or strings, and returns the list of paths. If passed asingle Node, the result is the same as calling

Iy
=== SCONS 23

Get Bui | dPat h: Getting the Path From aNode or
String

st r (node) (seeabove). Thestring(s) can have embedded construction variables, which are expanded asusual, using
the calling environment's set of variables. The paths can be files or directories, and do not have to exist.

env=Envi r onment (VAR="val ue")
n=Fil e("foo.c")
print (env. Get Bui | dPat h([n, "sub/dir/$VAR']))

Would print the following file names:

% scons -Q
['foo.c', 'sub/dir/value']
scons: ~.' is up to date.

Thereis also afunction version of Get Bui | dPat h which can be called without an Envi r onnent ; that uses the
default SCons Envi r onment to do substitution on any string arguments.

Iy
=== SCONS 24

6 Dependencies

So far we've seen how SCons handles one-time builds. But one of the main functions of a build tool like SConsisto
rebuild only what is necessary when source files change--or, put another way, SCons should not waste time rebuilding
things that don't need to be rebuilt. You can see this at work simply by re-invoking SCons after building our smple
hel | o example:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

scons: ~.' is up to date

The second time it is executed, SCons realizes that the hel | o program is up-to-date with respect to the current
hel | o. ¢ sourcefile, and avoidsrebuildingit. Y ou can seethismore clearly by namingthehel | o program explicitly
on the command line:

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Note that SConsreports™. ..is up to date" only for target files named explicitly on the command line, to
avoid cluttering the output.

6.1. Deciding When an Input File Has Changed:
the Deci der Function

Another aspect of avoiding unnecessary rebuildsis the fundamental build tool behavior of rebuilding things when an
input file changes, so that the built software is up to date. By default, SCons keeps track of this through a content
signature, or hash, of the contents of each file, although you can easily configure SCons to use the modification times
(or time stamps) instead. Y ou can even write your own Python function for deciding if an input file should trigger
arebuild.

Using Content Signaturesto Decide if a File Has Changed

6.1.1. Using Content Signatures to Decide if a File Has
Changed

By default, SCons uses a cryptographic hash of the file's contents, not the file's modification time, to decide whether
afile has changed. This means that you may be surprised by the default SCons behavior if you are used to the Make
convention of forcing arebuild by updating the file's modification time (using the touch command, for example):

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% touch hello.c

% scons -Q hello

scons: " hello' is up to date

Even though the file's modification time has changed, SCons realizes that the contents of the hel | o. ¢ file have
not changed, and therefore that the hel | o program need not be rebuilt. This avoids unnecessary rebuilds when, for
example, someone rewrites the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

Note that you can, if you wish, specify the default behavior of using content signatures explicitly, using the Deci der
function asfollows:

Progran(' hello.c")
Deci der (' content')

You can aso usethe string ' MD5' asasynonym for' cont ent' when caling the Deci der function - this older
name is deprecated since SCons now supports a choice of hash functions, not just the MD5 function.

6.1.1.1. Ramifications of Using Content Signatures

Using content signatures to decide if an input file has changed has one surprising benefit: if a source file has been
changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as the last time the file
was built, then any "downstream” target files that depend on the rebuilt-but-not-changed target file actually need not
be rebuilt.

So if, for example, a user were to only change acomment in ahel | o. c file, then the rebuilt hel | o. o file would
be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in
the object file). SCons would then realize that it would not need to rebuild the hel | o program asfollows:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE A COWENT I N hel |l o. c]
% scons -Q hello

cc -o hello.o -c hello.c

Iy
=== SCONS 26

Using Time Stampsto Decide If a File Has Changed

scons: " hello' is up to date.

In essence, SCons "short-circuits' any dependent builds when it realizes that a target file has been rebuilt to exactly
the samefile asthe last build. This does take some extra processing time to read the contents of thetarget (hel | 0. 0)
file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has
Changed

If you prefer, you can configure SCons to use the modification time of afile, not the file contents, when deciding if a
target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an input file has changed since
the last time atarget has been built.

Themost familiar way to usetime stampsistheway Make does: that is, have SCons decide that atarget must be rebuilt
if a source file's modification time is newer than the target file. To do this, call the Deci der function asfollows:

oject (' hello.c")
Deci der (' ti nest anp- newer ')

This makes SCons act like Make when afile's modification timeis updated (using the touch command, for example):

% scons -Q hello.o

cc -0 hello.o -c hello.c
% touch hello.c

% scons -Q hello.o

cc -0 hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string ' make' asa
synonym for' ti mest anp- newer' when caling the Deci der function:

oject (' hello.c")
Deci der (' make')

One drawback to using times stamps exactly like Make is that if an input file's modification time suddenly becomes
older than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored
from a backup archive, for example. The contents of the restored file will likely be different than they were the last
time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is
not newer than the target.

Because SCons actually storesinformation about the source files' time stamps whenever atarget is built, it can handle
this situation by checking for an exact match of the sourcefile time stamp, instead of just whether or not the sourcefile
is newer than the target file. To do this, specify the argument ' t i mest anp- mat ch' when calling the Deci der
function:

oject (' hello.c")
Deci der (' ti mestanp-mat ch')

When configured this way, SCons will rebuild atarget whenever a source file's modification time has changed. So if
weusethet ouch -t option to change the modification time of hel | 0. ¢ to an old date (January 1, 1989), SCons
will still rebuild the target file:

Iy
=== SCONS 27

Deciding If aFile Has Changed Using Both MD
Signatures and Time Stamps

% scons -Q hello.o

cc -o hello.o -c hello.c

% touch -t 198901010000 hell o.c
% scons -Q hello.o

cc -o hello.o -c hello.c

In general, the only reason to prefer t i mest anp- newer instead of t i nest anp- nat ch, would be if you have
some specific reason to require this Make-like behavior of not rebuilding atarget when an otherwise-modified source
fileisolder.

6.1.3. Deciding If a File Has Changed Using Both MD
Sighatures and Time Stamps

As a performance enhancement, SCons provides a way to use a file's content signature, but to read those contents
only when thefil€'s timestamp has changed. To do this, call the Deci der functionwith' cont ent - ti mest anp'
argument as follows:

Program(' hello.c")
Deci der (' content-ti nmestanp')

So configured, SCons will still behave like it does when using Deci der (' content'):

% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o
% touch hello.c
% scons -Q hello
scons: " hello' is up to date
%edit hello.c
[CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been performed by
simply looking at the modification time of thehel | o. c file, not by opening it and performing a signature calculation
on its contents. This can significantly speed up many up-to-date builds.

The only drawback to using Deci der (' content-ti mestanp') isthat SCons will not rebuild a target file
if a source file was modified within one second of the last time SCons built the file. While most developers are
programming, thisisn't aproblem in practice, sinceit's unlikely that someone will have built and then thought quickly
enough to make a substantive change to a source file within one second. Certain build scripts or continuous integration
tools may, however, rely on the ability to apply changes to files automatically and then rebuild as quickly as possible,
inwhich case use of Deci der (' content-ti mestanp') may not be appropriate.

6.1.4. Extending SCons: Writing Your Own Custom
Deci der Function

The different string values that we've passed to the Deci der function are essentially used by SCons to pick one of
several specific internal functions that implement various ways of deciding if a dependency (usualy a source file)

Iy
=== SCONS 28

Extending SCons. Writing Y our Own Custom Deci der
Function

has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a
dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used
to rebuild alot of different target files, but each target file really only depends on one particular section of the input
file. We'd like to have each target file depend on only its section of the input file. However, since the input file may
contain alot of data, we want to open theinput file only if itstimestamp has changed. This could be donewith acustom
Deci der function that might look something like this:

Progran(' hello.c")
def decide_if_changed(dependency, target, prev_ni, repo_node=None):
i f dependency.get tinmestanp() != prev_ni.tinmestanp:
dep = str(dependency)
tgt = str(target)
if specific_part_of file_has_changed(dep, tgt):
return True
return Fal se
Deci der (deci de_i f _changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the t ar get . Both
of these are passed to the functions as SCons Node objects, which we convert to strings using the Pythonst r () .

The third argument, pr ev_ni , is an object that holds the content signature and/or timestamp information that was
recorded about the dependency the last time the target was built. A pr ev_ni object can hold different information,
depending on the type of thing that the dependency argument represents. For normal files, the pr ev_ni object
has the following attributes:

csig
The content signature: a cryptographic hash, or checksum, of the file contents of the dependency file the last
timethet ar get wasbuilt.

si ze
The sizein bytes of thedependency file the last time the target was built.

ti mestanp
The modification time of the dependency filethelast timethet ar get was built.

These attributes may not be present at the time of the first run. Without any prior build, no targets have been created
and no . sconsi gn DB file exists yet. So you should always check whether the pr ev_ni attribute in question is
available (use the Python hasat t r method or at r y-except block).

Thefourthargumentr epo_node isthe Node touseif itisnot Nonewhen comparing Bui | dI nf 0. Thisistypically
only set when the target node only existsinaReposi t ory

Note that ignoring some of the argumentsin your custom Deci der function isa perfectly normal thing to do, if they
don't impact the way you want to decide if the dependency file has changed.

We finally present a small example for acsi g-based decider function. Note how the signature information for the
dependency filehasto get initialized viaget _csi g during each function call (thisis mandatory!).

env = Environment ()

Iy
=== SCONS 29

Mixing Different Ways of Deciding If aFile Has
Changed

def config file_decider(dependency, target, prev_ni, repo_node=None):
i mport os.path

W always have to init the .csig val ue..
dep_csi g = dependency. get _csi g()
.csig may not exist, because no target was built yet..
if not prev_ni.hasattr("csig"):
return True
Target file may not exist yet
if not os.path.exists(str(target.abspath)):
return True
if dep_csig !'= prev_ni.csig:
Some change on source file => update installed one
return True
return Fal se

def update file():
with open("test.txt", "a") as f:
f.wite("sone |[ine\n")

update file()

Activate our own decider function
env. Deci der (config file_decider)

env.Install ("install", "test.txt")

6.1.5. Mixing Different Ways of Deciding If a File Has
Changed

The previous examples have all demonstrated calling the global Deci der function to configure al dependency
decisions that SCons makes. Sometimes, however, you want to be able to configure different decision-making for
different targets. When that's necessary, you can use the env. Deci der method to affect only the configuration
decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using content signatures and another using file modification
times from the same source we might configure it this way:

envl Envi ronnment (CPPPATH = ['."'])

env2 envl. Cl one()

env2. Deci der (' ti mest anp-match')

envl. Progran{(' prog-content', 'programl.c')
env2. Progran{' prog-ti mestanp', 'progranR.c')

If both of the programsinclude the samei nc. h file, then updating the modification time of i nc. h (using the touch
command) will cause only pr og-ti mest anp to be rebuilt:

% scons -Q
cc -0 progranil.o -c -1. progranil.c

Iy
=== SCONS 30

Implicit Dependencies: The $CPPPATH Construction
Variable

CC -0 prog-content programl.o

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

% touch inc.h

% scons -Q

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

6.2. Implicit Dependencies: The $CPPPATH
Construction Variable

Now suppose that our "Hello, World!" program actually has an #i ncl ude lineto include the hel | o. h filein the
compilation:

#i ncl ude <hel |l 0. h>

i nt
mai n()
{
printf("Hello, %!\n", string);
}

And, for completeness, the hel | o. h filelooks like this:

#define string “wor | d"

In this case, we want SCons to recognize that, if the contents of the hel | 0. h file change, the hel | o program must
be recompiled. To do this, we need to modify the SConst r uct filelike so:

Program(' hello.c', CPPPATH=".")

The $CPPPATH value tells SCons to look in the current directory (' . ') for any filesincluded by C source files (. ¢
or . h files). With this assignment in the SConst r uct file:

% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

% [CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

First, noticethat SConsconstructedthe- | . argumentfromthe' . ' inthe SCPPPATH variable so that the compilation
would find the hel | 0. h filein the local directory.

Second, realize that SCons knows that the hel | o program must be rebuilt because it scans the contents of the
hel | o. c filefor the#i ncl ude linesthat indicate another file is being included in the compilation. SCons records

Iy
=== SCONS 31

Caching Implicit Dependencies

these as implicit dependencies of the target file, Consequently, when the hel | 0. h file changes, SCons realizes that
the hel | o. ¢ file includes it, and rebuilds the resulting hel | o program that depends on both the hel | 0. ¢ and
hel | 0. hfiles.

Likethe$LI BPATHvariable, the $CPPPATH variable may bealist of directories, or astring separated by the system-
specific path separation character (":' on POSIX/Linux, ';' on Windows). Either way, SCons creates the right command-
line options so that the following example:

Program(' hello.c', CPPPATH = ['include', '/home/project/inc'])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -0 hello.o -c -linclude -1/hone/project/inc hello.c
cc -0 hello hello.o

And like this on Windows:

C.\>scons -Q hell o. exe

cl /Fohello.obj /c hello.c /nologo /1include /I\home\project\inc
link /nol ogo /QUT: hel | 0. exe hel | 0. obj

enbedMani f est ExeCheck(target, source, env)

6.3. Caching Implicit Dependencies

Scanning each file for #i ncl ude lines does take some extra processing time. When you're doing a full build of a
large system, the scanning time is usually avery small percentage of the overall time spent on the build. Y ou're most
likely to notice the scanning time, however, when you rebuild all or part of alarge system: SConswill likely take some
extratime to "think about" what must be built before it issues the first build command (or decides that everything is
up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking down subtle
problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while SCons scans files can annoy
individual developerswaiting for their builds to finish. Consequently, SCons letsyou cache the implicit dependencies
that its scanners find, for use by later builds. You can do this by specifying the - - i npl i ci t - cache option on
the command line:

% scons -Q --inplicit-cache hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

If you don't want to specify - -i npl i ci t - cache on the command line each time, you can make it the default
behavior for your build by setting thei npl i cit _cache optioninan SConscri pt file:

Set Option('inplicit_cache', 1)

SCons does not cache implicit dependencies like this by default because the - -i npl i ci t - cache causes SCons
to simply use the implicit dependencies stored during the last run, without any checking for whether or not
those dependencies are still correct. Specificaly, thismeans--i npl i ci t - cache instructs SCons to not rebuild
"correctly" in the following cases:

Iy
=== SCONS 32

The--inplicit-deps-changed Option

e When--inplicit-cache isused, SCons will ignore any changes that may have been made to search paths
(like $CPPPATH or $L1 BPATH). This can lead to SCons not rebuilding a file if a change to $CPPPATH would
normally cause a different, same-named file from a different directory to be used.

* When--inplicit-cacheisused, SConswill not detect if asame-named file has been added to adirectory that
is earlier in the search path than the directory in which the file was found last time.

6.3.1. The--inplicit-deps-changed Option

When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan the files for
which it previously cached the dependencies. For example, if you have recently installed a new version of external
code that you use for compilation, the external header files will have changed and the previously-cached implicit
dependencies will be out-of-date. Y ou can update them by running SConswiththe- - i npl i ci t - deps- changed
option:

% scons -Q --inplicit-deps-changed hell o
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the information.

6.3.2. The--inplicit-deps-unchanged Option

By default, when caching dependencies, SCons notices when a file has been modified and re-scans the file for any
updated implicit dependency information. Sometimes, however, you may want to force SCons to use the cached
implicit dependencies, even if the sourcefiles changed. This can speed up abuild for example, when you have changed
your sourcefilesbut know that you haven't changed any #i ncl ude lines. Inthiscase, youcanusethe--i nplicit -
deps- unchanged option:

% scons -Q --inplicit-deps-unchanged hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Inthiscase, SConswill assumethat the cached implicit dependencies are correct and will not bother to re-scan changed
files. For typical builds after small, incremental changesto sourcefiles, the savings may not be very big, but sometimes
every bit of improved performance counts.

6.4. Explicit Dependencies: the Depends
Function

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation, SCons allows
you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This
is specified using the Depends method:

hell o = Progran(' hello.c')
Depends(hell o, 'other file")

Iy
=== SCONS 33

Dependencies From External Files: the Par seDepends
Function

% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date
% edit other file
[CHANGE THE CONTENTS OF ot her fil e]
% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for example, as
returned by acall to a Builder):

hell o = Program(' hello.c")
goodbye = Progran(' goodbye. c')
Depends(hel | o, goodbye)

in which case the dependency or dependencies will be built before the target(s):

% scons -Q hello

cc -c goodbye.c -o goodbye. o
cc -0 goodbye goodbye. o

cc -c hello.c -o hello.o

cc -0 hello hello.o

6.5. Dependencies From External Files: the
Par seDepends Function

SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit
dependencies due to limitations of the scanner implementation.

The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency
on a header file.

#defi ne FOO HEADER <f 00. h>
#i ncl ude FOO_HEADER

int main() {
return FOO
}

% scons -Q

cc -0 hello.o -¢c -1. hello.c
cc -o hello hello.o

% [CHANGE CONTENTS OF f 00. h]
% scons -Q

Iy
=== SCONS 34

Ignoring Dependencies. the | gnor e Function

scons: ~.' is up to date.

Apparently, the scanner does not know about the header dependency. Not being a full-fledged C preprocessor, the
scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. Par seDepends can parse the
contents of the compiler output in the style of Make, and explicitly establish all of the listed dependencies.

Thefollowing example uses Par seDepends to process acompiler generated dependency file which is generated as
aside effect during compilation of the object file:

obj = Cbject('hello.c', CCFLAGS='-MD -Mr hello.d , CPPPATH='.')
Si deEffect (' hell o.d', obj)

Par seDepends(' hel l 0.d")

Program(' hell o', obj)

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c
cc -0 hello hello.o

% [CHANGE CONTENTS OF fo0. h]

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c

Parsing dependencies from a compiler-generated . d file has a chicken-and-egg problem, that causes unnecessary
rebuilds:

% scons -Q

cc -0 hello.o -c -MD -MF hello.d -I. hello.c

cc -0 hello hello.o

% scons -Q --debug=expl ai n

scons: rebuilding “hello.o because foo.h' is a new dependency

cc -0 hello.o -c -MD -MF hello.d -1. hello.c
% scons -Q
scons: ~.' is up to date.

In thefirst pass, the dependency file is generated while the object fileis compiled. At that time, SCons does not know
about the dependency on f 00. h. In the second pass, the object file is regenerated because f 00. h is detected as a
new dependency.

Par seDepends immediately reads the specified file at invocation time and just returns if the file does not exist. A
dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted
dependencies are not stored in the signature database during the same build pass. This limitation of Par seDepends
leads to unnecessary recompilations. Therefore, Par seDepends should only be used if scanners are not available
for the employed language or not powerful enough for the specific task.

6.6. Ignoring Dependencies: the | gnor e
Function

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell
SCons specifically to ignore a dependency using the | gnor e function as follows:

Iy
=== SCONS 35

Order-Only Dependencies: the Requi r es Function

hel | o_obj =Cbj ect (' hello.c")
hell o = Program hell o_obj)
I gnore(hello_obj, '"hello.h")

% scons -Q hello
cc -c -0 hello.o hello.c
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date.
%edit hello.h
[CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello
scons: " hello' is up to date.

Now, the above example is alittle contrived, because it's hard to imagine a real-world situation where you wouldn't
want to rebuild hel | o if the hel | 0. h file changed. A more redlistic example might be if the hel | o program is
being built in adirectory that is shared between multiple systems that have different copies of the st di 0. h include
file. In that case, SCons would notice the differences between the different systems' copies of st di 0. h and would
rebuild hel | o each time you change systems. Y ou could avoid these rebuilds as follows:

hell o = Progran(' hello.c', CPPPATH=['/usr/include'])
| gnore(hello, '/usr/include/stdio.h")

| gnor e can aso be used to prevent a generated file from being built by default. Thisis dueto the fact that directories
depend on their contents. So to ignore a generated file from the default build, you specify that the directory should
ignorethe generated file. Notethat thefilewill still bebuilt if the user specifically requeststhetarget on sconscommand
ling, or if thefile is a dependency of another file which is requested and/or is built by default.

hel | o_obj =Cbj ect (' hell o.c")
hell o = Program(hell o_obj)
I gnore('.",[hello, hello_obj])

% scons -Q

scons: ~.' is up to date.

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date.

6.7. Order-Only Dependencies: the Requi r es
Function

Occasionaly, it may be useful to specify that a certain file or directory must, if necessary, be built or created before
some other target is built, but that changes to that file or directory do not require that the target itself be rebuilt. Such

Iy
=== SCONS 36

Order-Only Dependencies: the Requi r es Function

arelationship is called an order-only dependency because it only affects the order in which things must be built--the
dependency before the target--but it is not a strict dependency relationship because the target should not change in
response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the build was
performed, the version number, etc., and which isincluded in every program that you build. The version file's contents
will change every build. If you specify a normal dependency relationship, then every program that depends on that
file would be rebuilt every time you ran SCons. For example, we could use some Python codeinaSConst r uct file
to create anew ver si on. c file with a string containing the current date every time we run SCons, and then link a
program with the resulting object file by listing ver si on. ¢ in the sources:

i mport tine

version_c_text =

char *date = "%";
"ttoptinme.ctinme(tinme.tinme())
open('version.c', 'wW).wite(version_c_text)
hell o = Program([' hello.c', 'version.c'])

If welist ver si on. c as an actua source file, though, then the ver si on. o filewill get rebuilt every time we run
SCons (because the SConst r uct fileitself changes the contents of ver si on. ¢) and the hel | o executable will
get re-linked every time (because the ver si on. o file changes):

% scons -Q hello

cc -0 hello.o -c hello.c

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o

(Notethat for the above example to work, we sleep for one second in between each run, so that the SConst r uct file
will createaver si on. c filewith atime string that's one second later than the previous run.)

One solution isto usethe Requi r es function to specify that thever si on. o must be rebuilt beforeit is used by the
link step, but that changesto ver si on. o should not actually cause the hel | o executable to be re-linked:

i mport time

version_c_text =

char *date = "%";
"ttt time.ctime(time.time())
open('version.c', "W).wite(version_c_text)

versi on_obj = Object('version.c')

Iy
=== SCONS 37

The Al waysBui | d Function

hell o = Progran(' hello.c',
LI NKFLAGS = str(version_obj[0]))

Requi res(hell o, version_obj)

Notice that because we can no longer list ver si on. ¢ asone of the sourcesfor the hel | o program, we haveto find
some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object
file name (extracted fromver si on_obj list returned by the Qbj ect builder cal) into the $LI NKFLAGS variable,
because $L1 NKFLAGS is aready included in the $L1 NKCOMcommand line.

With these changes, we get the desired behavior of only re-linking the hel | o executable when the hel | 0. ¢ has
changed, even though the ver si on. o is rebuilt (because the SConst ruct file still changes the ver si on. ¢
contents directly each run):

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date
% sl eep 1

% [CHANGE THE CONTENTS OF hel |l o. c]
% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date

6.8. The Al waysBui | d Function

How SCons handles dependencies can also be affected by the Al waysBui | d method. When afile is passed to the
Al waysBui | d method, like so:

hell o = Progran(' hello.c')
Al waysBui | d(hel | 0)

Then the specified target file (hel | o in our example) will always be considered out-of-date and rebuilt whenever that
target file is evaluated while walking the dependency graph:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

cc -0 hello hello.o

The Al waysBui | d function has a somewhat misleading name, because it does not actually mean the target file will
be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the

Iy
=== SCONS 38

The Al waysBui | d Function

target file is encountered while evaluating the targets specified on the command line (and their dependencies). So
specifying some other target on the command line, atarget that does not itself depend on the Al waysBui | d target,
will still be rebuilt only if it's out-of-date with respect to its dependencies:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello.o

scons: " hello.o'" is up to date

Iy
=== SCONS 39

7 Environments

An environment is a collection of values that can affect how a program executes. SCons distinguishes between
three different types of environments that can affect the behavior of SCons itself (subject to the configuration in the
SConscri pt files), aswell asthe compilers and other tools it executes:

External Environment
The External Environment isthe set of variablesin the user's environment at the time the user runs SCons. These
variables are not automatically part of an SCons build but are available to be examined if needed. See Section 7.1,
“Using Values From the External Environment”, below.

Construction Environment
A Construction Environment is a distinct object created within a SConscr i pt file and which contains values
that affect how SCons decides what action to use to build a target, and even to define which targets should
be built from which sources. One of the most powerful features of SCons is the ability to create multiple
construction environments, including the ability to clone a new, customized construction environment from an
existing construction environment. See Section 7.2, “Construction Environments”, below.

Execution Environment
An Execution Environment isthe values that SCons sets when executing an external command (such asacompiler
or linker) to build one or more targets. Note that thisis not the same as the external environment (see above). See
Section 7.3, “Controlling the Execution Environment for Issued Commands’, below.

Unlike Make, SCons does not automatically copy or import val ues between different environments (with the exception
of explicit clones of construction environments, which inherit the values from their parent). Thisisadeliberate design
choice to make sure that builds are, by default, repeatable regardless of the values in the user's external environment.
This avoids a whole class of problems with builds where a developer's local build works because a custom variable
setting causes a different compiler or build option to be used, but the checked-in change breaks the official build
because it uses different environment variable settings.

Note that the SConscr i pt writer can easily arrange for variables to be copied or imported between environments,
and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in
appropriate ways. The point is not that copying variables between different environmentsis evil and must aways be
avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and
when to import avariable from one environment to another, making informed decisions about striking the right balance
between making the build repeatable on the one hand and convenient to use on the other.

Using Values From the External Environment

Sidebar: Python Dictionaries

If you're not familiar with the Python programming language, hereis a short summary of the Python dictionary
datatype, or "dict". Y ou may also see the terms mapping, associative array or key-value store used for thistype
of data structure, which appears in many programming languages.

A dictionary associates keys with values, so asking the dict about a key gives you back the associated value.
Values can be retrieved using item access: the key name string in square brackets (mydi ct [" keynanme"]).
If the key is not present, you get a KeyEr r or exception. Dicts also provide aget () method which returns
adefault value if the key is not present, so it does not fail in that case. Y ou can specity the default as a second
argument to the get call, otherwise it defaults to None.

Assigning to a key creates the association - either a new key/value pair if the key was unknown, or replacing
the previous value if the key was already in the dictionary. Initializing adictionary uses curly braces ({ }). Here
are some simple examples inspired by those in the official Python tutorial, as you would see them if you typed
these to the interactive Python interpreter (>>> is the interpreter prompt):

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel[']jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> print(tel)

{'jack': 4098, 'qguido': 4127, 'irv': 4127}
>>> 'guido' in tel

Tr ue

>>> print(tel['jack'])

Traceback (nmost recent call last):
File "<stdin>", line 1, in <nodul e>

KeyError: 'jack'
>>> print(tel.get('jack'))
None

Construction environments are written to behave like aPython dictionary, and the SENV construction variablein
aconstruction environment isaPython dictionary. Theos. envi r on value that Python usesto make available
the external environment is also a dictionary. We will need these concepts in this chapter and throughout the
rest of this guide.

7.1. Using Values From the External
Environment

The external environment variable settings that the user hasin force when executing SCons are available in the Python
0s. envi r on dictionary. That syntax means the envi r on attribute of the os module. In Python, to access the
contentsof amoduleyou must firsti nmpor t it-soyouwouldincludethei nmport os statementtoany SConscr i pt
file in which you want to use values from the user's external environment.

i mport os

b4

SCONS 41

Construction Environments

print("Shell is", os.environ['SHELL'])

More usefully, you can use the 0s. envi r on dictionary in your SConscri pt files to initialize construction
environments with values from the user's external environment. Read on to the next section for information on how
to do this.

7.2. Construction Environments

Itisrarethat al of the softwarein alarge, complicated system needs to be built exactly the same way. For example,
different source files may need different options enabled on the command line, or different executable programs need
to be linked with different libraries. SCons accommodates these different build requirements by allowing you to create
and configure multiple construction environments that control how the softwareis built. A construction environment
isan object that has anumber of associated construction variables, each with aname and avalue, just like adictionary.
(A construction environment also has an attached set of Builder methods, which you'll learn more about later.)

7.2.1. Creating a Construction Environment: the
Envi r onment Function

A construction environment is created by the Envi r onment function:
env = Environment ()

SCons initializes every new construction environment with a set of construction variables based on the tools that it
finds on your system, plusthe default set of builder methods necessary for using thosetools. The construction variables
are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as well as the command
lines to invoke them.

When you initialize a construction environment you can set the values of the environment's construction variables to
control how a program is built. For example:

env = Environnent (CC=' gcc', CCFLAGS='-Q2')
env. Progran(' foo.c')

The construction environment in this example is still initialized with the same default construction variable values,
except that the user has explicitly specified use of the GNU C compiler gec, and that the - O2 (optimization level two)
flag should be used when compiling the object file. In other words, the explicit initialization of $CC and $CCFLAGS
overridesthe default valuesin the newly-created construction environment. So arun from thisexamplewould look like:

% scons -Q
gcc -o foo.o -c -2 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a Construction Environment

Y ou can fetch individual values, known as Construction Variabl es, using the same syntax used for accessing individual
named itemsin a Python dictionary:

Iy
=== SCONS 42

Fetching Values From a Construction Environment

env = Environment ()
print("CCis: %" %env['CC])
print("LATEX is: %" % env.get (' LATEX , None))

This example SConst r uct file doesn't contain instructions for building any targets, but because it's still a valid
SConst r uct it will be evaluated and the Python pri nt calls will output the values of $CC and SLATEX for us
(remember from the sidebar that using the get () method for access means we get a default value back, rather than
afailure, if the variable is not set):

% scons -Q

CCis: cc
LATEX is: None
scons: ' is up to date.

A construction environment is actually an object with associated methods and attributes. If you want to have direct
access to only the dictionary of construction variables you can fetch this using the env. Di cti onary method
(although it'srarely necessary to use this method):

env = Environnent (FOO=' foo', BAR='bar')

cvars = env.Dictionary()

for key in ["OBISUFFI X', 'LIBSUFFI X , 'PROGSUFFI X]:
print("key = %, value = %" % (key, cvars[key]))

This SConst r uct filewill print the specified dictionary items for us on POSIX systems as follows:

% scons -Q

key = OBISUFFI X, value = .0
key = LIBSUFFI X, value = .a
key = PROGSUFFI X, val ue =
scons: ' is up to date.

And on Windows:

C.\>scons -Q

key = OBISUFFI X, val ue = . obj
key = LIBSUFFI X, value = .lib
key = PROGSUFFI X, val ue = .exe
scons: ' is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment, the Python
code to do that in sorted order might look something like:

env = Environnent ()
for itemin sorted(env.Dictionary().itens()):
print("construction variable = '%', value = '"%'" %item

It should be noted that for the previous example, there is actually a construction environment method that does the
same thing more simply, and tries to format the output nicely aswell:

env = Environment ()

Iy
=== SCONS 43

Expanding Va ues From a Construction Environment: the
subst Method

print(env. Dunp())

7.2.3. Expanding Values From a Construction
Environment: the subst Method

Another way to get information from a construction environment is to use the subst method on a string containing
$ expansions of construction variable names. As a simple example, the example from the previous section that used
env[' CC] tofetch the value of $CC could aso be written as:

env = Environnent ()
print("CCis: %" % env.subst('$CC))

One advantage of using subst to expand stringsisthat construction variablesin the result get re-expanded until there
are no expansions left in the string. So a simple fetch of avalue like $CCCOM

env = Environnent (CCFLAGS=' - DFQO)
print("CCCOMis:", env['CCCOM])

Will print the unexpanded value of $CCCOM showing us the construction variables that still need to be expanded:

% scons -Q
CCCOM i s: $CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS -c -0 $TARGET $SOURCES
scons: ~.' is up to date.

Calling the subst method on $CCOM however:

env = Environnment (CCFLAGS=" - DFOO)
print("CCCOMis:", env.subst (' $CCCOM))

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the final output:

% scons -Q
CCCOM is: gcc -DFOO -¢c -0
scons: .' is up to date.

Note that because we're not expanding this in the context of building something there are no target or source files for
$TARCET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion
(advanced topic)

If a problem occurs when expanding a construction variable, by default it is expanded to an empty string, that is,
"replaced with nothing" - scons will not fail for unknown variables.

Iy
=== SCONS 44

Contralling the Default Construction Environment: the
Def aul t Envi ronnment Function

env = Environment ()
print("value is:", env.subst('->$M SSI NG<-'))

% scons -Q
val ue is: -><-
scons: ~.' is up to date.

Sometimes this behavior leads to surprises while the build configuration is being developed, for example a typo
in a variable name isn't reported, and the variable expression is just dropped (empty string). SCons provides a
Al | owSubst Except i ons function to allow the behavior to be tuned. Internally, when a problem occurs with a
variable expansion, it generates an exception, but before letting that exception kill the build, scons checks a list of
exceptions to ignore - by default NarmeEr r or and | ndexEr r or . You can call Al | owSubst Except i ons to set
the list of ignored exceptions to anything you wish, including none at all. That way, when a variable fails to expand
that you thought should be expanding to something, the build will stop and you'll get an error message that should help
diagnose the problem. You give Al | owSubst Except i ons as many exception name arguments as you wish it to
ignore, or call it with no arguments to have all expansion exceptions propagate and stop scons.

Al | owSubst Except i ons()
env = Environment ()
print("value is:", env.subst('->$M SSI NG<-'))

% scons -Q

scons: *** NanmeError "nane 'MSSING is not defined trying to evaluate ~$M SSI NG
File "/home/ ny/ project/SConstruct”, line 3, in <nmodul e>

This can aso be used to allow other exceptions that might occur, most usefully with the ${. ..} construction
variable syntax. For example, thiswould allow zero-division to occur in avariable expansion in addition to the default
exceptions alowed

Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visionError)
env = Environnent ()
print("value is:", env.subst('->${1/ 0}<-'))

% scons -Q
val ue is: -><-
scons: ' is up to date.

If Al | owSubst Excepti ons iscalled multiple times, each call completely overwrites the previous list of allowed
exceptions.

7.2.5. Controlling the Default Construction Environment:
the Def aul t Envi ronnent Function

All of the Builder functionsthat we'veintroduced sofar, likePr ogr amand Li br ar y, useaconstruction environment
that contains settings for the various compilers and other tools that SCons configures by default, or otherwise knows
about and has discovered on your system. If not invoked as methods of a specific construction environment, they use
the default construction environment The goal of the default construction environment isto make many configurations
"just work" to build software using readily available tools with a minimum of configuration changes.

Iy
=== SCONS 45

Multiple Construction Environments

If needed, you can control the default construction environment by using the Def aul t Envi r onnment function to
initialize various settings by passing them as keyword arguments:

Def aul t Envi ronment (CC='/ usr/ | ocal / bi n/ gcc')

When configured as above, al calls to the Pr ogr amor Cbj ect Builder will build object files with the / usr/
| ocal / bi n/ gcc compiler.

The Def aul t Envi r onnment function returns the initialized default construction environment object, which can
then be manipulated like any other construction environment (note that the default environment works like asingleton
- it can have only oneinstance - so the keyword arguments are processed only on the first call. On any subsequent call
the existing object isreturned). So the following would be equival ent to the previous example, setting the $CCvariable
to/ usr/ 1 ocal / bi n/ gcc but as a separate step after the default construction environment has been initialized:

def _env = Defaul t Envi ronment ()
def _env['CC] = '/usr/local/bin/gcc'

One very common use of the Def aul t Envi r onment functionisto speed up SConsinitiaization. As part of trying
to make most default configurations "just work," SCons will actually search the local system for installed compilers
and other utilities. This search can take time, especially on systemswith slow or networked file systems. If you know
which compiler(s) and/or other utilities you want to configure, you can control the search that SCons performs by
specifying some specific tool modules with which to initialize the default construction environment:

def _env = Defaul t Envi ronment (tool s=['gcc', 'gnulink'], CC='/usr/local/bin/gcc')

So the above examplewouldtell SConsto explicitly configure thedefault environment to useitsnormal GNU Compiler
and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to
use the compiler found at / usr/ | ocal / bi n/ gcc.

7.2.6. Multiple Construction Environments

The real advantage of construction environments is that you can create as many different ones as you need, each
tailored to a different way to build some piece of software or other file. If, for example, we need to build one program
with the - Q2 flag and another with the - g (debug) flag, we would do this like so:

opt
dbg

Envi ronnent (CCFLAGS=' - Q2')
Envi ronnent (CCFLAGS=' - g')

opt. Program(' foo', 'foo.c')

dbg. Program(' bar', 'bar.c')

% scons -Q

ccC -0 bar.o -c -g bar.c
cc -0 bar bar.o

cc -o foo.o -c -2 foo.c
cc -o foo foo.o

Iy
=== SCONS 46

Making Copies of Construction Environments; the
Cl one Method

We can even use multiple construction environments to build multiple versions of asingle program. If you do this by
simply trying to use the Pr ogr ambuilder with both environments, though, like this:

opt
dbg

Envi ronnent (CCFLAGS=' - Q2")
Envi ronnent (CCFLAGS=' - g')

opt. Program(' foo', 'foo.c')

dbg. Program(' foo', 'foo.c')

Then SCons generates the following error:

% scons -Q

scons: *** Two environnents with different actions were specified for the sanme target:

File "/home/ ny/ project/SConstruct”, line 6, in <nmodul e>

Thisis because thetwo Pr ogr amcalls have each implicitly told SCons to generate an object file named f 00. 0, one
with a $CCFLAGS vaue of - O2 and one with a $CCFLAGS value of - g. SCons can't just decide that one of them
should take precedence over the other, so it generates the error. To avoid this problem, we must explicitly specify that
each environment compile f 00. ¢ to a separately-named object file using the bj ect builder, like so:

opt = Environnment (CCFLAGS=' - O2')
dbg = Environment (CCFLAGS='-g')
o = opt.vject('foo-opt', 'foo.c')

opt . Progr am(o)

d = dbg. Ovj ect (' foo-dbg', 'foo.c')
dbg. Pr ogr am(d)

Notice that each call to the Cbj ect builder returns a value, an internal SCons object that represents the object file
that will be built. We then use that object as input to the Pr ogr ambuilder. This avoids having to specify explicitly
the object file name in multiple places, and makes for acompact, readable SConst r uct file. Our SCons output then
looks like:

% scons -Q

cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg. o

cc -o foo-opt.o -c -2 foo.c
cc -o foo-opt foo-opt.o

7.2.7. Making Copies of Construction Environments: the
Cl one Method

Sometimes you want more than one construction environment to share the same values for one or more variables.
Rather than always having to repeat all of the common variables when you create each construction environment, you
can usetheenv. C one method to create a copy of a construction environment.

Likethe Envi r onnment call that creates a construction environment, the Cl one method takes construction variable
assignments, which will override the values in the copied construction environment. For example, suppose we want

Iy
=== SCONS 47

f oo

Replacing Vaues: the Repl ace Method

to use gcc to create three versions of a program, one optimized, one debug, and one with neither. We could do this
by creating a "base" construction environment that sets $CC to gcc, and then creating two copies, one which sets
$CCFLAGS for optimization and the other which sets SCCFLAGS for debugging:

env
opt
dbg

Envi ronnent (CC=' gcc')
env. C one(CCFLAGS="' - Q2')
env. C one(CCFLAGS=' -g')

env. Program(' foo', 'foo.c')

o = opt.vject('foo-opt', 'foo.c')
opt . Progr am(o)

d = dbg. Ovj ect (' foo-dbg', 'foo.c')
dbg. Pr ogr an(d)

Then our output would look like:

% scons -Q

gcc -o foo.o -c foo.c

gcc -o foo foo.o

gcc -o foo-dbg.o -c -g foo.c
gcc -o foo-dbg foo-dbg.o

gcc -0 foo-opt.o -c -2 foo.c
gcc -0 foo-opt foo-opt.o

7.2.8. Replacing Values: the Repl ace Method

Y ou can replace existing construction variable values using the env. Repl ace method:

env = Environment (CCFLAGS=" - DDEFI NE1')
env. Repl ace(CCFLAGS=" - DDEFI NE2')
env. Progran(' foo.c')

The new value (- DDEFI NE2 in the above example) replaces the value in the construction environment - it's like a
Python assignment statement for construction variables.

% scons -Q
cc -o foo.o -c -DDEFI NE2 foo.cC
cc -o foo foo.o

You can safely call Repl ace for construction variables that don't exist in the construction environment

env = Environnent ()
env. Repl ace(NEW VARI ABLE=' xyzzy')
print (" NEW. VARl ABLE = %" % env[' NEW VARI ABLE'])

In this case, the construction variable simply gets added to the construction environment.

% scons -Q

Iy
=== SCONS 48

Setting Values Only If They're Not Already Defined: the
Set Def aul t Method

NEW VARI ABLE = xyzzy
scons: ' is up to date.

If you have alot of variables to replace, it may be more convenient to put them in a dictionary and pass that to the
Repl ace method. That might look like:

newal ues = {
"F77PATH': ['foo', '$FOQ bar', blat],
"I NCPREFI X": 'foo ',
"I NCSUFFI X*: ' bar"',
"FOO': 'baz',

env. Repl ace(**newal ues)

Because the variables aren't expanded until the construction environment is actually used to build the targets, and
because SCons function and method calls are order-independent, the last replacement "wins" and is used to build al
targets, regardless of the order in which the calls to Replace() are interspersed with calls to builder methods:

env = Environment (CCFLAGS=' - DDEFI NE1')
print (" CCFLAGS = %" % env[' CCFLAGS'])
env. Progran(' foo.c')

env. Repl ace(CCFLAGS=" - DDEFI NE2')
print (" CCFLAGS = %" % env[' CCFLAGS'])
env. Progran(' bar.c')

The timing of when the replacement actually occurs relative to when the targets get built becomes apparent if we run
scons without the - Q option:

% scons

scons: Readi ng SConscript files ...
CCFLAGS = - DDEFI NE1

CCFLAGS = - DDEFI NE2

scons: done readi ng SConscript files.
scons: Building targets ...

cC -0 bar.o -c -DDEFI NE2 bar.c

cCc -0 bar bar.o

cc -o foo.o -c -DDEFI NE2 foo.cC

cc -o foo foo.o

scons: done buil ding targets.

Because the replacement occurs while the SConscri pt files are being read, the $CCFLAGS variable has already
been set to - DDEFI NE2 by the time the f 00. o0 target is built, even though the call to the Repl ace method does
not occur until later in the SConscr i pt file.

7.2.9. Setting Values Only If They're Not Already Defined:
the Set Def aul t Method

Sometimesit's useful to be able to specify that a construction variable should be set to avalue only if the construction
environment does not already have that variable defined Y ou can do thiswiththeenv. Set Def aul t method, which
behaves similarly to the set def aul t method of Python dictionary objects:

Iy
=== SCONS 49

Appending to the End of Values: the Append Method

env. Set Def aul t (SPECI AL_FLAG=' - extra-option')

Thisis especially useful when writing your own Tool modulesto apply variables to construction environments.

7.2.10. Appending to the End of Values: the Append
Method

Y ou can append a value to an existing construction variable using the env. Append method:

env = Environment (CPPDEFI NES=[' MY_VALUE'])
env. Append(CPPDEFI NES=[' LAST"])
env. Program(' foo.c')

Note $CPPDEFI NES is the preferred way to set preprocessor defines, as SCons will generate the command line
arguments using the correct prefix/suffix for the platform, leaving the usage portable. If you use $CCFLAGS and
$SHCCFLAGS, you need to include them in their final form, which isless portable.

% scons -Q
cc -o foo.o -c -DWMY_VALUE -DLAST foo.c
cc -o foo foo.o

If the construction variable doesn't already exist, the Append method will create it:

env = Environment ()
env. Append(NEW VARI ABLE = ' added')
print (" NEW. VARl ABLE = %" %env[' NEW VARI ABLE'])

Which yields:

% scons -Q
NEW VARI ABLE = added
scons: ~.' is up to date.

Note that the Append function tries to be "smart" about how the new value is appended to the old value. If both are
strings, the previous and new strings are simply concatenated. Similarly, if both arelists, the lists are concatenated. If,
however, oneis astring and the other isalist, the string is added as a new element to the list.

7.2.11. Appending Unique Values: the AppendUni que
Method

Sometimes it's useful to add a new value only if the existing construction variable doesn't already contain the value.
This can be done using theenv. AppendUni que method:

env. AppendUni que(CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not aready contain a- g value.

Iy
=== SCONS 50

Prepending to the Beginning of Values: the Pr epend
Method

7.2.12. Prepending to the Beginning of Values: the
Pr epend Method

Y ou can prepend a value to the beginning of an existing construction variable using the env. Pr epend method:

env = Envi ronnent (CPPDEFI NES=[' MY_VALUE'])
env. Pr epend(CPPDEFI NES=[' FI RST'])
env. Progran(' foo.c')

SCons then generates the preprocessor define arguments from CPPDEFI NES values with the correct prefix/suffix.
For example on Linux or POSI X, the following arguments would be generated: - DFI RST and - DMY_VALUE

% scons -Q

cc -o foo.o -c -DFI RST - DMY_VALUE f oo. c

cc -o foo foo.o0

If the construction variable doesn't already exist, the Pr epend method will createit:

env = Environment ()

env. Prepend(NEW VARI ABLE=' added')

print ("NEW VARl ABLE = %" % env[' NEW VARI ABLE'])

Which yields:

% scons -Q

NEW VARI ABLE = added

scons: .' is up to date.

Likethe Append function, the Pr epend function triesto be "smart" about how the new value is appended to the old

value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both arelists, thelistsare
concatenated. If, however, oneis astring and the other isalist, the string is added as a new element to the list.

7.2.13. Prepending Unique Values: the PrependUni que
Method

Sometimesiit's useful to add a new value to the beginning of a construction variable only if the existing value doesn't
already contain the to-be-added value. This can be done using the env. Pr ependUni que method:

env. PrependUni que(CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not already contain a- g value.

7.2.14. Overriding Construction Variable Settings

Rather than creating a cloned construction environment for specific tasks, you can override or add construction
variables when calling a builder method by passing them as keyword arguments. The values of these overridden or

Iy
=== SCONS 51

Overriding Construction Variable Settings

added variableswill only bein effect when building that target, and will not affect other parts of the build. For example,
if you want to add additional libraries for just one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])

or generate a shared library with a non-standard suffix:

env. Shar edLi br ar y(
target="word',
sour ce=' word. cpp',
SHLI BSUFFI X=' . ocx' ,
LI BSUFFI XES=["' . ocx'],

When overriding this way, the Python keyword arguments in the builder call mean "set to this value". If you want
your override to augment an existing value, you have to take some extra steps. Inside the builder call, it is possible to
substitute in the existing value by using a string containing the variable name prefaced by adollar sign ($).

env = Environnment (CPPDEFI NES=" FOO'")

env. Qbj ect (target ="fool. 0", source="foo.c")

env. Qbj ect (target="fo002. 0", source="foo.c", CPPDEFI NES="BAR")

env. bj ect (target ="fo003. 0", source="foo.c", CPPDEFINES=["BAR', "$CPPDEFINES"])

Which yields:

% scons -Q

cc -o fool.o -c -DFQO foo.c

cc -o foo2.0 -c -DBAR foo.cC

cc -o foo3.0 -c -DBAR -DFQO foo.c

Itisalso possibletousethepar se_f | ags keyword argument in an override to merge command-line style arguments
into the appropriate construction variables. This works like the env. Mer geFl ags method, which will be fully
described in the next chapter.

This example adds 'include’ to $CPPPATH, 'EBUG' to $CPPDEFI NES, and 'm' to $LI BS:

env = Environment ()
env. Program(' hell o', "hello.c', parse flags='-1include -DEBUG -1 n)

So when executed:

% scons -Q
cc -0 hello.o -¢c -DEBUG -1include hello.c
cc -o hello hello.o -Im

Using temporary overrides this way is lighter weight than making a full construction environment, so it can help
performance in large projects which have lots of specia case values to set. However, keep in mind that this only
works well when the targets are unique. Using builder overrides to try to build the same target with different sets of

Iy
=== SCONS 52

Controlling the Execution Environment for | ssued
Commands

flags or other construction variables will lead tothescons: *** Two environnents with different
actions. .. error described in Section 7.2.6, “Multiple Construction Environments’ above. In this case you will
actually want to create separate environments.

7.3. Controlling the Execution Environment for
Issued Commands

When SCons builds a target file, it does not execute the commands with the external environment that you used to
execute SCons. Instead, it builds an execution environment from the values stored in the SENV construction variable
and uses that for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls where the
operating system will look for commands and utilities, will amost certainly not be the same as in the external
environment from which you called SCons. This means that SCons might not necessarily find all of the toolsthat you
can successfully execute from the command line.

The default value of the PATH environment variable on a POSIX system is/ usr/ | ocal / bi n:/opt/bin:/

bi n: / usr/ bi n: / snap/ bi n. The default value of the PATH environment variable on a Windows system comes
from the Windows registry value for the command interpreter. If you want to execute any commands--compilers,
linkers, etc.--that are not in these default locations, you need to set the PATH value in the $ENV dictionary in your
construction environment.

The ssimplest way to do thisisto initialize explicitly the value when you create the construction environment; thisis

one way to do that:

path = ['/usr/local/bin', '/bin', "/fusr/bin']
env = Environnment (ENV={' PATH : pat h})

Assigning adictionary to the $ENV construction variable in thisway completely resets the execution environment, so
that the only variable that will be set when external commands are executed will be the PATH value. If you want to
use therest of the valuesin $ENV and only set the value of PATH, you can assign avalue only to that variable:

env['ENV J]['PATH] = ['/usr/local/bin', '/bin', '/usr/bin']

Note that SCons does allow you to define the directoriesin the PATHin a string with paths separated by the pathname
separator character for your system (' : ' on POSIX systems,' ;' on Windows).

env['ENV'][' PATH] = '/usr/local/bin:/bin:/usr/bin'

But doing so makesyour SConscr i pt filelessportable, sinceit will be correct only for the system type that matches
the separator. Y ou can use the Python os. pat hsep for for greater portability - don't worry too much if this Python
syntax doesn't make sense since there are other ways available:

i mport os
env['ENV][' PATH] = os.pathsep.join(['/usr/local/bin', '/bin', "/fusr/bin])

Iy
=== SCONS 53

Propagating PATH From the External Environment

7.3.1. Propagating PATH From the External Environment

Y ou may want to propagate the external environment PATH to the execution environment for commands. Y ou do this
by initializing the PATH variable with the PATH value from the os. envi r on dictionary, which is Python's way of
letting you get at the external environment;

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH]})

Alternatively, you may find it easier to just propagate the entire external environment to the execution environment
for commands. Thisis simpler to code than explicity selecting the PATH value:

i mport os
env = Environnment (ENV=0s. envi ron. copy())

Either of these will guarantee that SConswill be able to execute any command that you can execute from the command
line. The drawback is that the build can behave differently if it's run by people with different PATH values in their
environment--for example, if both the/ bi nand/ usr/ | ocal / bi n directories have different cc commands, then
which one will be used to compile programs will depend on which directory islisted first in the user's PATH variable.

7.3.2. Adding to PATH Values in the Execution
Environment

One of the most common requirements for manipulating avariable in the execution environment isto add one or more
custom directoriesto apath search variablelike PATHon Linux or POSIX systems, or %°ATHY0on Windows, so that a
locally-installed compiler or other utility can befound when SConstriesto executeit to update atarget. SCons provides
env. PrependENVPat h and env. AppendENVPat h functions to make adding things to execution variables
convenient. You call these functions by specifying the variable to which you want the value added, and then value
itself. Soto add some/ usr/ | ocal directoriesto the $SPATHand $LI B variables, you might:

env = Environnment (ENV=0s. envi ron. copy())
env. PrependENVPat h(' PATH , '/usr/local /bin")
env. AppendENVPat h(' LIB', '/usr/local/lib")

Note that the added values are strings, and if you want to add multiple directories to a variable like $PATH, you must
include the path separator character in the string (: on Linux or POSIX, ; on Windows, or use 0s. pat hsep for
portability).

7.4. Using the toolpath for external Tools
7.4.1. The default tool search path

Normally when using a tool from the construction environment, several different search locations are checked
by default. This includes the SCons/ Tool s/ directory that is part of the scons distribution and the directory
site_scons/site_tool s relaivetotheroot SConst r uct file.

Iy
=== SCONS 54

Providing an external directory to toolpath

Built-in tool or tool located within site_tools
env = Environment (t ool s=[' SoneTool '])
env. SomeTool (targets, sources)

The search | ocati ons woul d include by default
SCons/ Tool / SomeTool . py

SCons/ Tool / SomeTool / __init__. py
./site_scons/site_tool s/ SoneTool . py
./site_scons/site_tool s/SoneTool/ __init__.py

7.4.2. Providing an external directory to toolpath

In some cases you may want to specify adifferent location to search for tools. The Envi r onment function contains
an option for thiscalled t ool pat h This can be used to add additional search directories.

Tool located within the tool path directory option
env = Environment (

t ool s=[' SomeTool '],

t ool pat h=["' /opt/ SomeTool Pat h', '/opt/SomeTool Pat h2']
)

env. SomeTool (targets, sources)

The search locations in this exanple woul d incl ude:
[opt / SomeTool Pat h/ SomreTool . py

[opt / SomeTool Pat h/ SomeTool / __init__. py

[opt / SomeTool Pat h2/ SoneTool . py

[opt / SomeTool Pat h2/ SoneTool / __init__.py

SCons/ Tool / SomeTool . py

SCons/ Tool / SomeTool / __init__. py
./site_scons/site_tool s/ SoneTool . py
./site_scons/site_tool s/SoneTool/ __init__.py

7.4.3. Nested Tools within a toolpath (advanced topic)

Since SCons 3.0, a Builder may be located within a subdirectory / sub-package of the toolpath. This is similar to
namespacing within Python. With nested or namespaced tools we can use the dot notation to specify a subdirectory
that the tool is located under.

namespaced tar get

env = Environment (
t ool s=[' SubDi r 1. SubDi r 2. SoneTool '],
t ool pat h=["' / opt / SomeTool Pat h']

)

env. SomeTool (targets, sources)

Wth this exanple the search | ocations woul d incl ude
[opt / SomeTool Pat h/ SubDi r 1/ SubDi r 2/ SomeTool . py

[opt / SomeTool Pat h/ SubDi r 1/ SubDi r 2/ SomeTool / __init__. py
SCons/ Tool / Subbi r 1/ Subbi r 2/ SomeTool . py

SCons/ Tool / SubDi r 1/ SubDi r 2/ SommeTool / __init__. py

Iy
=== SCONS 55

Using sys. pat h within the toolpath

./site_scons/site_tool s/SubDir1/ SubDir2/ SoneTool . py
./site_scons/site_tool s/SubDir1/ SubDir2/ SoneTool/__init__.py

7.4.4. Using sys. pat h within the toolpath

If wewant to accesstools external to sconswhich arefindableviasys. pat h (for example, toolsinstalled viaPython's
pip package manager), itispossibletousesys. pat h with thetool path. One thing to watch out for with this approach
isthat sys. pat h can sometimes contains paths to . egg files instead of directories. So we need to filter those out
with this approach.

namespaced target using sys.path w thin tool path

searchpaths = []
for itemin sys.path:
if os.path.isdir(item:
sear chpat hs. append(iten)

env = Environment (
t ool s=[' sonei nst al | edpackage. SoneTool '],
t ool pat h=sear chpat hs

)

env. SomeTool (targets, sources)

By using sys. pat h with the toolpath argument and by using the nested syntax we can have scons search packages
installed via pip for Toals.

For W ndows based on the Python version and install directory, this may be sonmething lik
C.\ Pyt hon35\ Li b\ si t e- packages\ sonei nst al | edpackage\ SoneTool . py
C:\ Pyt hon35\ Li b\ si t e- packages\ sonei nst al | edpackage\ SomeTool\ __init__.py

For Linux this could be sonething |ike:
[usr/1ib/python3/di st-packages/ sonei nst al | edpackage/ SoneTool . py
[fusr/1ib/python3/di st-packages/ sonei nst al | edpackage/ SomeTool / __init__.py

7.4.5. Using the PyPackageDi r function to add to the
toolpath

In some cases you may want to use atool located within an installed external pip package. Thisis possible by the use
of sys. pat h with the toolpath. However, in that situation you need to provide a prefix to the toolname to indicate
whereit islocated within sys. pat h.

searchpaths = []
for itemin sys.path:
if os.path.isdir(item:
sear chpat hs. append(iten
env = Environment (
t ool s=[' t ool s_exanpl e. subdi r 1. subdi r 2. SoneTool '],
t ool pat h=sear chpat hs

Iy
=== SCONS 56

Using the PyPackageDi r function to add to the
toolpath

)

env. SomeTool (targets, sources)

To avoid the use of a prefix within the name of the tool or filtering sys. pat h for directories, we can use
PyPackageDi r functiontolocate the directory of the Python package. PyPackageDi r returnsaDir object which
represents the path of the directory for the Python package / module specified as a parameter.

namespaced target using sys.path
env = Environnment (

t ool s=[' SonmeTool '],

t ool pat h=[PyPackageDi r (' t ool s_exanpl e. subdi r 1. subdir2')]
)

env. SomeTool (targets, sources)

Iy
=== SCONS 57

8 Automatically Putting

Command-line Options into
their Construction Variables

This chapter describes the Mer geFl ags, Par seFl ags, and Par seConfi g methods of a construction
environment, aswell asthepar se_f | ags keyword argument to methods that construct environments.

8.1. Merging Options into the Environment: the
Mer geFl ags Function

SCons construction environments have a Mer geFl ags method that merges values from a passed-in argument into
the construction environment. If the argument is a dictionary, Mer geFl ags treats each value in the dictionary as a
list of optionsyou would passto acommand (such asacompiler or linker). Mer geFl ags will not duplicate an option
if it already exists in the construction variable. If the argument is a string, Mer geFl ags calls the Par seFl ags
method to burst it out into a dictionary first, then acts on the result.

Mer geFl ags tries to be intelligent about merging options, knowing that different construction variables may have
different needs. When merging options to any variable whose nhame ends in PATH, Mer geFl ags keepsthe leftmost
occurrence of the option, becausein typical lists of directory paths, the first occurrence "wins." When merging options
to any other variable name, Mer geFl ags keeps the rightmost occurrence of the option, because in alist of typical
command-line options, the last occurrence "wins."

env = Environnent ()

env. Append(CCFLAGS=" -option -O3 -O1')
flags = {' CCFLAGS : '-whatever -O3'}
env. Mer geFl ags(fl ags)

print (" CCFLAGS: ", env[' CCFLAGS])

% scons -Q
CCFLAGS: ['-option', '-0O1', '-whatever', '-Q3']
scons: ~.' is up to date.

Note that the default value for $CCFLAGS is an internal SCons object which automatically converts the options you
specify asastring into alist.

Merging Options While Creating Environment: the
par se_f | ags Parameter

env = Environment ()

env. Append(CPPPATH=["' /i nclude', '/usr/local/include', '/usr/include'])
flags = {" CPPPATH : ['/usr/opt/include', '/usr/local/include']}

env. Mer geFl ags(fl ags)

print (" CPPPATH:. ", env[' CPPPATH])

% scons -Q
CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ".' is up to date.

Notethat thedefault valuefor $CPPPATHisanormal Pythonlist, so you should giveitsvaluesasalist inthedictionary
you pass to the Mer geFl ags function.

If Mer geFl ags is passed anything other than a dictionary, it calls the Par seFl ags method to convert it into a
dictionary.

env = Environment ()

env. Append(CCFLAGS="' -option -G8 -0O1')

env. Append(CPPPATH=["' /i nclude', '/usr/local/include', '/usr/include'])
env. Mer geFl ags(' -whatever -1/usr/opt/include -O3 -1/usr/local/include')
print("CCFLAGS: ", env[' CCFLAGS])

print (" CPPPATH:. ", env[' CPPPATH])

% scons -Q

CCFLAGS: ['-option', '-0O1', '-whatever', '-Q3']

CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ~.' is up to date.

In the combined example above, Par seFl ags has sorted the optionsinto their corresponding variables and returned
adictionary for Mer geFl ags to apply to the construction variables in the specified construction environment.

8.2. Merging Options While Creating
Environment: the parse_fl ags Parameter

It isalso possible to merge construction variable values from arguments given to the Envi r onnent call itself. If the
par se_f | ags keyword argument is given, its value is distributed to construction variables in the new environment
in the same way as described for the Mer geFl ags method. This aso works when calling env. C one, aswell as
in overrides to builder methods (see Section 7.2.14, “Overriding Construction Variable Settings”).

env = Environnent (parse flags="-1/opt/include -L/opt/lib -1foo")
for k in ('CPPPATH , 'LIBPATH , 'LIBS):

print("%:" %k, env.get(k))
env. Program(“f1.c")

% scons -Q

CPPPATH: ['/opt/include']
LI BPATH: ['/opt/lib']
LIBS: ['foo0']

Iy
=== SCONS 59

Separating Compile Argumentsinto their Variables: the
Par seFl ags Function

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

8.3. Separating Compile Arguments into their
Variables: the Par seFl ags Function

SCons has a bewildering array of construction variables for different types of options when building programs.
Sometimes you may not know exactly which variable should be used for a particular option.

SCons construction environments have aPPar seFl ags method that takes a set of typical command-line options and
distributes them into the appropriate construction variables Historically, it was created to support the Par seConf i g
method, so it focuses on options used by the GNU Compiler Collection (GCC) for the C and C++ toolchains.

Par seFl ags returns a dictionary containing the options distributed into their respective construction variables.
Normally, thisdictionary would then be passed to Mer geFl ags to mergethe optionsinto aconstruction environment,
but the dictionary can be edited if desired to provide additional functionality. (Note that if the flags are not going to
be edited, calling Mer geFl ags with the options directly will avoid an additional step.)

env = Environnent ()
d = env. ParseFl ags("-1/opt/include -L/opt/lib -1foo")
for k, vin sorted(d.itens()):
if v:
print(k, v)
env. Mer geFl ags(d)
env. Program(“f1.c")

% scons -Q

CPPPATH [/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Notethat if the options are limited to generic typeslike those above, they will be correctly translated for other platform
types:

C.\>scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cl /Fofl.obj /c fl1.c /nologo /I\opt\include

link /nologo /QUT: f1.exe /LIBPATH: \opt\lib foo.lib f1.obj
enmbedMani f est ExeCheck(target, source, env)

Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in $CCFLAGS
so they will be used for both C and C++ compiles:

env = Environment ()
d = env. Par seFl ags("-what ever")
for k, vin sorted(d.itens()):
if wv:
print(k, v)

Iy
=== SCONS 60

Finding Installed Library Information: the
Par seConf i g Function

env. Mer geFl ags(d)
env. Program("f1.c")

% scons -Q

CCFLAGS - what ever

cc -o fl.o -c -whatever fl.c
cc -ofl fl.o

Par seFl ags will also accept a(recursive) list of stringsasinput; thelist isflattened before the strings are processed:

env = Environnent ()

d = env. ParseFl ags(["-I/opt/include", ["-L/opt/lib", "-1fo0"]])
for k, vin sorted(d.itens()):
if v
print(k, v)

env. Mer geFl ags(d)
env. Program(“f1.c")

% scons -Q

CPPPATH ['/opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

If a string begins with an exclamation mark (!), the string is passed to the shell for execution. The output of the
command is then parsed:

env = Environment ()

d = env. ParseFl ags(["!echo -1/opt/include", "!echo -L/opt/lib", "-1fo0"])
for k, v in sorted(d.itens()):
if v
print(k, v)

env. Mer geFl ags(d)
env. Program("f1.c")

% scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Par seFl ags isregularly updated for new options; consult the man page for details about those currently recognized.

8.4. Finding Installed Library Information: the
Par seConf i g Function

Configuring the right options to build programs to work with libraries--especially shared libraries--that are available
on POSIX systems can be complex. To help this situation, various utilities with names that end in conf i g return

Iy
=== SCONS 61

Finding Installed Library Information: the
Par seConf i g Function

the command-line options for the GNU Compiler Collection (GCC) that are needed to build and link against those
libraries; for example, the command-line optionsto usealibrary named | i b could befound by calling a utility named
lib-config.

A more recent convention is that these options are available through the generic pkg-config program, providing a
common framework, error handling, and the like, so that all the package creator has to do is provide the set of strings
for his particular package.

SCons construction environments have a Par seConf i g method that asks the host system to execute a command
and then configures the appropriate construction variables based on the output of that command. This lets you run a
program like pkg-config or a more specific utility to help set up your build.

env = Environment ()

env[' CPPPATH] = ['/Ilib/comnpat"']

env. ParseConfi g("pkg-config x11 --cflags --1ibs")
print (" CPPPATH:. ", env[' CPPPATH])

SCons will execute the specified command string, parse the resultant flags, and add the flags to the appropriate
environment variables.

% scons -Q
CPPPATH: ['/lib/compat', '/usr/X11l/include']
scons: ' is up to date.

Inthe example above, SCons has added theinclude directory to $CPPPATH (depending on what other flags are emitted
by the pkg- conf i g command, other variables may have been extended as well.)

Note that the options are merged with existing options using the Mer geFl ags method, so that each option only
occurs once in the construction variable.

env = Environnent ()

env. Par seConfi g("pkg-config x11 --cflags --1ibs")
env. Par seConfi g("pkg-config x11 --cflags --1ibs")
print ("CPPPATH ", "CPPPATH ", env[' CPPPATH])

% scons -Q
CPPPATH: ['/usr/X11/i ncl ude']
scons: ~.' is up to date.

Iy
=== SCONS 62

9 Controlling Build Output

A key aspect of creating a usable build configuration is providing useful output from the build, so its users can readily
understand what the build is doing and get information about how to control the build. SCons provides severa ways
of controlling output from the build configuration to help make the build more useful and understandable.

9.1. Providing Build Help: the Hel p Function

It's often very useful to be able to give users some help that describes the specific targets, build options, etc., that can
be used for your build. SCons provides the Hel p function to allow you to specify this help text:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.

")
Optionally, you can specify the append flag:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.
", append=True)

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying multi-line strings
like help text.)

When the SConst ruct or SConscri pt files contain acall to the Hel p function, the specified help text will be
displayed in response to the SCons - h option:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programli to build the production program
'scons debug' to build the debug version.

Use scons -H for help about SCons built-in comrand-|ine options.

Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

The SConscri pt filesmay contain multiple calls to the Hel p function, in which case the specified text(s) will be
concatenated when displayed. Thisallowsyou to define fragments of help text together with the corresponding feature,
even if spread across multiple SConscr i pt files. In this situation, the order in which the SConscri pt filesare
called will determine the order in which the Hel p functions are called, which will determine the order in which the
various bits of text will get concatenated.

Calling Hel p("text™") overwritesthe help text that otherwise would be collected from any command-line options
defined in AddOpt i on calls. To preserve the AddOpt i on help text, add the append=Tr ue keyword argument
when calling Hel p. This also preserves the option help for the scons command itself. To preserve only the
AddOpt i on help, also add the| ocal _onl y=Tr ue keyword argument. (This only matters the first time you call
Append, on any subsequent calls the text you passed is added to the existing help text).

Another use would be to make the help text conditional on some variable. For example, suppose you only want to
display a line about building a Windows-only version of a program when actually run on Windows. The following
SConst ruct file:

env = Environnent ()
Hel p("\ nType: 'scons programi to build the production program\n")
if env[' PLATFORM] == 'wi n32':
Hel p("\ nType: 'scons w ndebug' to build the Wndows debug version.\n")

Will display the complete help text on Windows:

C.\>scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programi to build the production program
Type: 'scons wi ndebug' to build the Wndows debug versi on.

Use scons -H for hel p about SCons built-in comrand-1ine options.
But only show the relevant option on aLinux or UNIX system:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programi to build the production program

Use scons -H for hel p about SCons built-in command-1ine options.

If thereisno Hel p text inthe SConst ruct or SConscri pt files, SConswill revert to displaying its standard list
that describes the SCons command-line options. Thislist is also always displayed whenever the - Hoption is used.

9.2. Controlling How SCons Prints Build
Commands: the $* COMSTR Variables

Sometimes the commands executed to compile object files or link programs (or build other targets) can get very
long, long enough to make it difficult for users to distinguish error messages or other important build output from the

Iy
=== SCONS 64

Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

commands themselves. All of the default $* COMvariables that specify the command lines used to build various types
of target files have a corresponding $* COVBTR variable that can be set to an aternative string that will be displayed
when the target is built.

For example, suppose you want to have SCons display a" Conpi | i ng" message whenever it's compiling an object
file,and a" Li nki ng" when it'slinking an executable. Y ou could writea SConst r uct filethat lookslike:

env = Environnment (CCCOMSTR = " Conpi |l i ng $TARGET",
LI NKCOMSTR = "Li nki ng $TARGET")
env. Program(' foo.c')

Which would then yield the output:

% scons -Q
Conpi i ng foo.o0
Li nki ng foo

SCons performs complete variable substitution on $* COVBTR variables, so they have access to al of the standard
variables like $TARGET $SOURCES, etc., as well as any construction variables that happen to be configured in the
construction environment used to build a specific target.

Of course, sometimesit's still important to be able to see the exact command that SCons will execute to build atarget.
For example, you may simply need to verify that SConsis configured to supply the right options to the compiler, or a
developer may want to cut-and-paste a compile command to add afew options for a custom test.

One common way to give users control over whether or not SCons should print the actual command line or a short,
configured summary is to add support for a VERBOSE command-line variable to your SConst r uct file. A smple
configuration for this might look like:

env = Environment ()
i f ARGUMENTS. get (' VERBOSE') != "'1":
env[' CCCOMSTR] = "Conpiling $TARGET"
env[' LI NKCOMSTR] = "Linki ng $TARGET"
env. Program(' foo.c')

By only setting the appropriate $* COVSTR variablesif the user specifies VERBOSE=1 on the command line, the user
has control over how SCons displays these particular command lines:

% scons -Q
Conpi i ng foo.o0

Li nki ng foo

% scons -Q -c
Rermoved foo. 0
Rermoved f oo

% scons - Q VERBOSE=1
cc -o foo.o -c foo.c
cc -o foo foo.o

Iy
=== SCONS 65

Providing Build Progress Output: the Pr ogr ess
Function

A gentle reminder here: many of the commands for building come in pairs, depending on whether the intent isto build
an object for usein ashared library or not. The command strings mirror this, so it may be necessary to set, for example,
both CCCOMSTR and SHCCCOVSTR to get the desired results.

9.3. Providing Build Progress Output: the
Pr ogr ess Function

Another aspect of providing good build output is to give the user feedback about what SCons is doing even when
nothing is being built at the moment. This can be especially true for large builds when most of the targets are already
up-to-date. Because SCons can take a long time making absolutely sure that every target is, in fact, up-to-date with
respect to a lot of dependency files, it can be easy for users to mistakenly conclude that SCons is hung or that there
is some other problem with the build.

One way to deal with this perception isto configure SCons to print something to let the user know what it's "thinking
about." The Progr ess function alows you to specify a string that will be printed for every file that SCons is
"considering” while it is traversing the dependency graph to decide what targets are or are not up-to-date.

Progress(' Eval uati ng $TARGET\n')
Program('fl.c')
Program('f2.c')

Note that the Pr ogr ess function does not arrange for a newline to be printed automatically at the end of the string
(as does the Python pr i nt function), and we must specify the\ n that we want printed at the end of the configured
string. This configuration, then, will have SCons print that it is Eval uat i ng each file that it encountersin turn as
it traverses the dependency graph:

% scons -Q

Eval uati ng SConst r uct
Eval uating f1.c
Eval uating f1.0

cc -o fl.o-c fl.c
Eval uating f1

cc -oflfl.o

Eval uating f2.c
Eval uating f2.0

cc -o f2.0 -c f2.c
Eval uating f2

cc -o f2 f2.0

Eval uating .

Of course, normally you don't want to add all of these additional linesto your build output, asthat can makeit difficult
for the user to find errors or other important messages. A more useful way to display this progress might be to have the
file names printed directly to the user's screen, not to the same standard output stream where build output is printed,
and to use acarriage return character (\ r) so that each file name gets re-printed on the same line. Such a configuration
would look like:

Progress(' $TARGET\ "',

Iy
=== SCONS 66

Providing Build Progress Output: the Pr ogr ess
Function

file=open('/dev/tty', "wW),
overw ite=True)
Program('fl.c')
Program('f2.c')

Note that we also specified the over wri t e=Tr ue argument to the Pr ogr ess function, which causes SCons
to "wipe out" the previous string with space characters before printing the next Pr ogr ess string. Without the
overwr i t e=Tr ue argument, a shorter file name would not overwrite all of the charactesin alonger file name that
precedes it, making it difficult to tell what the actual file name is on the output. Also note that we opened up the /
dev/ tty filefor direct access (on POSIX) to the user's screen. On Windows, the equivalent would be to open the
con: filename.

Also, it'simportant to know that although you can use $TARGET to substitute the name of the node in the string, the
Pr ogr ess function does not perform general variable substitution (because there's not necessarily a construction
environment involved in evaluating a node like a sourcefile, for example).

Y ou can also specify alist of stringsto the Pr ogr ess function, in which case SCons will display each string in turn.
This can be used to implement a"spinner” by having SCons cycle through a sequence of strings:

Progress(['-\r", "\\\r', "|\r", "/\r'], interval =5)
Program('fl.c')
Program('f2.c')

Note that here we have also used thei nt er val = keyword argument to have SCons only print anew "spinner" string
once every five evaluated nodes. Using ani nt er val = count, even with stringsthat use $TARGET like our examples
above, can be a good way to lessen the work that SCons expends printing Pr ogr ess strings, while still giving the
user feedback that indicates SConsiis still working on evaluating the build.

Lastly, you can have direct control over how to print each evaluated node by passing a Python function (or other
Python callable) to the Pr ogr ess function. Y our function will be called for each evaluated node, allowing you to
implement more sophisticated logic like adding a counter:

screen = open('/dev/tty', 'w)
count = 0
def progress_functi on(node)
count += 1
screen.wite(' Node %id: %\r' % (count, node))

Progress(progress_function)

Of course, if you choose, you could completely ignore the node argument to the function, and just print a count, or
anything else you wish.

(Note that there's an obvious follow-on question here: how would you find the total number of nodes that will be
evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general case, thereisn't a
good way to do that, short of having SCons evaluate its dependency graph twice, first to count the total and the second
timeto actually build the targets. Thiswould be necessary because you can't know in advance which target(s) the user
actually requested to be built. The entire build may consist of thousands of Nodes, for example, but maybe the user
specificaly requested that only a single object file be built.)

Iy
=== SCONS 67

Printing Detailed Build Status: the
CGet Bui | dFai | ur es Function

9.4. Printing Detailed Build Status: the
Get Bui | dFai | ur es Function

SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure. Sometimes it's
useful to give moreinformation about the build status at the end of therun, for instanceto print an informative message,
send an email, or page the poor slob who broke the build.

SConsprovidesaCGet Bui | dFai | ur es method that you can usein apythonat exi t functionto get alist of objects
describing the actions that failed while attempting to build targets. There can be more than one if you're using - j .
Here's asimple example:

i mport atexit

def print _build failures():
from SCons. Scri pt inport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))
atexit.register(print_build fail ures)

Theatexit.register cal registersprint _buil d_failures asanatexit calback, to be called before
SCons exits. When that function is caled, it calls Get Bui | dFai | ur es to fetch the list of failed objects. See the
man page for the detailed contents of the returned objects; some of the more useful attributes are. node, . errstr,
.filenanme,and. comrand. Thefi | enane isnot necessarily the same file asthe node; the node isthe target
that was being built when the error occurred, whilethef i | enaneisthefile or dir that actually caused the error. Note:
only call Get Bui | dFai | ur es at the end of the build; calling it at any other time is undefined.

Here is a more compl ete example showing how to turn each element of Get Bui | dFai | ur es into astring:

Make the build fail if we pass fail=1 on the command |ine
i f ARGUMENTS. get('fail', 0):
Conmand(' target', 'source', ['/bin/false'])

def bf _to_str(bf):

"""Convert an el enent of GetBuil dFailures() to a string

in a useful way."""

i mport SCons. Errors

if bf is None: # unknown targets product None in |ist
return ' (unknown tgt)'

elif isinstance(bf, SCons.Errors. StopError):
return str(bf)

elif bf.node:

return str(bf.node) + ': ' + bf.errstr
elif bf.fil enane:

return bf .filename + ': ' + bf.errstr
return 'unknown failure: ' + bf.errstr

i mport atexit

def build_status():
"""Convert the build status to a 2-tuple, (status, nsg).
from SCons. Scri pt inport GetBuil dFail ures

Iy
=== SCONS 68

Printing Detailed Build Status: the
CGet Bui | dFai | ur es Function

bf = GetBuil dFai |l ures()

i f Dbf:
bf is normally a list of build failures; if an elenent is None,
it's because of a target that scons doesn't know anythi ng about.

status = 'failed
failures_message = "\n".join(["Failed building %" %Dbf_to_str(x)
for x in bf if x is not None])
el se:
if bf is None, the build conpl eted successfully.
status = ' ok’

failures_message =
return (status, failures_nessage)

def display_ build_status():
"""Display the build status. Called by atexit.
Here you could do all kinds of conplicated things."""
status, failures_nessage = buil d_status()

if status == 'failed":
print("FAILED !'I1") # could display alert, ring bell, etc.
elif status == '"ok':

print("Build succeeded. ")
print(failures_nessage)

atexit.register(display_build_status)

When thisruns, you'll see the appropriate output:

% scons -Q

scons: ' is up to date.

Bui | d succeeded.

% scons -Q fail=1

scons: *** [target] Source "source' not found, needed by target “target'.

FAI LED! ! ']

Fail ed building target: Source "“source' not found, needed by target "target'.

Iy
=== SCONS 69

10 Controlling a Build From
the Command Line

Software builds are rarely completely static, so SCons gives you a number of ways to help control build execution
via instructions on the command line. The arguments that can be specified on the command line are broken down
into three types:

Options
Command-line arguments that begin with a- (hyphen) characters are called options. SCons provides ways for
you to examine and act on options and their values, aswell asthe ability to define custom optionsfor your project.
See Section 10.1, “Command-Line Options’, below.

Variables
Command-line arguments containing an = (equal sign) character are called build variables (or just variables).
SCons provides direct access to all of the build variable settings from the command line, as well as a higher-
level interface that lets you define known build variables, including defining types, default values, help text, and
automatic validation, aswell as applying those to a construction environment. See Section 10.2, “Command-Line
vari abl e=val ue Build Variables’, below.

Targets
Command-line arguments that are neither options nor build variables (that is, do not begin with a hyphen and do
not contain an egqual sign) are considered targets that you are telling SCons to build. SCons provides access to
the list of specified targets, as well as ways to set the default list of targets from within the SConscri pt files.
See Section 10.3, “Command-Line Targets’, below.

10.1. Command-Line Options

SCons has many command-line options that control its behavior. A command-line option always begins with one
or two hyphen (-) characters. The SCons manual page contains the description of the current options (see https://
scons.org/doc/production/HTML/scons-man.html).

10.1.1. How To Avoid Typing Command-Line Options
Each Time: the SCONSFLAGS Environment Variable

Y ou may find yourself using certain command-line options every time you run SCons. For example, you might find
it saves time to specify -j 2 to have SCons run up to two build commands in parallel. To avoid having to type -
i 2 by hand every time, you can set the external environment variable SCONSFLAGS to a string containing-j 2,

https://scons.org/doc/production/HTML/scons-man.html
https://scons.org/doc/production/HTML/scons-man.html

Getting Vaues Set by Command-Line Options: the
Get Opt i on Function

as well as any other command-line options that you want SCons to always use. SCONSFLAGS is an exception to the
usual rule that SCons itself avoids looking at environment variables from the shell you are running.

If, for example, you are using a POSIX shell such as bash or zsh and you always want SCons to use the - Q option,
you can set the SCONSFLAGS environment as follows:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...
[build output]
scons: done buil ding targets.
% export SCONSFLAGS="- Q'
% scons
[build output]

For csh-style shells on POSIX systems you can set the SCONSFLAGS environment variable as follows:
$ setenv SCONSFLAGS "- Q'

For the Windows command shell (cmd) you can set the SCONSFLAGS environment variable as follows:
C.\ Users\ foo> set SCONSFLAGS="- Q'

To set SCONSFLAGS more permanently you can add the setting to the shell's startup file on POSIX systems, and
on Windows you can use the Syst em Pr oper ti es control panel applet to select Envi ronment Vari abl es
and set it there.

10.1.2. Getting Values Set by Command-Line Options:
the Get Qpt i on Function

The Get Opt i on function lets you query the values set by the various command-line options.

One use case for Get Opt i on isto check the operation mode in order to bypass some steps, for example, checking
whether the - h (or - - hel p) option was given. Normally, SCons does not print its help text until after it has read
all of the SConscript files, since any SConscript can make additions to the help text. Of course, reading al of the
SConscript files takes extra time. If you know that your configuration does not define any additional help text in
subsidiary SConscript files, you can speed up displaying the command-line help by using a Get Opt i on query asa
guard for whether to load the subsidiary SConscript files:

if not GetOption(' help'):
SConscri pt (" src/ SConscript', export='"env')

The same technique can be used to specia-case the clean (Get Option('clean')) and no-execute
(Get Opti on(' no_exec')) modes.

In general, the string that you passto the Get Opt i on function to fetch the value of acommand-line option setting is
the same as the "most common™ long option name (beginning with two hyphen characters), although there are some

Iy
=== SCONS 71

Setting Values of Command-Line Options; the
Set Opt i on Function

exceptions. The list of SCons command-line options and the Get Opt i on strings for fetching them, are availablein
the Section 10.1.4, “ Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

Get Opt i on can be used to retrieve the values of options defined by callsto AddOpt i on. A Get Opt i on call must
appear after the AddOpt i on call for that option (unlike the defining of build targets, this is a case where "order
matters' in SCons). If the AddOpt i on call supplied adest keyword argument, a string with that name is what to
pass as the argument to Get Opt i on, otherwise it is a (possibly modified) version of the first long option name -
see AddOpt i on.

10.1.3. Setting Values of Command-Line Options: the
Set Opt i on Function

Y ou can also set the values of certain (but not all) SCons command-line optionsfromwithinthe SConscr i pt filesby
usingtheSet Opt i on function. Thestringsthat you useto set the values of SConscommand-line optionsare available
in the Section 10.1.4, “ Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

One use of the Set Opt i on functionisto specify avalueforthe-j or - - j obs option, so that you get the improved
performance of a parallel build without having to specify the option by hand. A complicating factor is that a good
valuefor the-j optionis somewhat system-dependent. One rough guideline is that the more processors your system
has, the higher you want to set the - j value, in order to take advantage of the number of CPUs.

For example, suppose the administrators of your development systems have standardized on setting a NUM_CPU
environment variable to the number of processors on each system. A little bit of Python code to access the environment
variable and the Set Opt i on function provides theright level of flexibility:

i mport os

numcpu = int(os.environ.get(' NUM CPU, 2))
Set Option(' num j obs', num cpu)
print("running with -j %" % Get Option(' num jobs'))

The above snippet of code sets the value of the - - j obs option to the value specified in the NUM_CPU environment
variable. (Thisis one of the exception cases where the string is spelled differently from the command-line option. The
string for fetching or setting the - - j obs valueisnum j obs for historical reasons.) The codein this example prints
thenum j obs value for illustrative purposes. It uses a default value of 2 to provide some minimal parallelism even
on single-processor systems:

% scons -Q
running with -j 2
scons: ~.' is up to date.

But if the NUM_CPU environment variableis set, then use that for the default number of jobs:

% export NUM CPU="4"

% scons -Q

running with -j 4

scons: .' is up to date.

But any explicit -j or --j obs vaue you specify on the command line is used first, whether the NUM_CPU
environment variableis set or not:

% scons -Q -j 7

Iy
=== SCONS 72

Strings for Getting or Setting Vaues of SCons Command-
Line Options

running with -j 7

scons: is up to date.
% export NUM CPU="4"

% scons -Q -j 3

running with -j 3

scons: is up to date.

10.1.4. Strings for Getting or Setting Values of SCons
Command-Line Options

The strings that you can pass to the Get Opt i on and Set Opt i on functions usually correspond to the first long-
form option name (that is, name beginning with two hyphen characters: - -), after replacing any remaining hyphen
characters with underscores.

Set Opt i on works for options added with AddOpt i on, but only if they were created with set t abl e=Tr ue in
the call to AddOpt i on (only available in SCons 4.8.0 and later).

Thefull list of strings and the variables they correspond to is as follows:

String for Get Opt i on and Set Opti on
cache_debug

Command-Line Option(s)

- -cache-debug

cache_di sabl e --cache-di sabl e

cache_force --cache-force

cache_show --cache-show

cl ean -c,--cl ean,--renove

config --config

directory -C,--directory

di skcheck - -di skcheck

duplicate --duplicate

file -f,--file,--makefile ,--sconstruct
hel p -h,--help

i gnore_errors --ignore-errors

i mplicit_cache --inmplicit-cache

i mplicit_deps_changed

--inmplicit-deps-changed

i mplicit_deps_unchanged

--inmplicit-deps-unchanged

interactive

--interact,--interactive

keep_goi ng -k, - - keep-goi ng
max_drift --max-drift
no_exec -n,--no-exec,--just-print,--dry-run,--

recon

no_progress

-Q

no site dir

--no-site-dir

num j obs

-j,--]jobs

profile_file

--profile

Iy
=== SCONS

73

Adding Custom Command-Line Options; the
AddOpt i on Function

String for Get Opt i on and Set Opt i on Command-Line Option(s)
question -g,--question

random --random

repository -Y,--repository,--srcdir
si |l ent -s,--silent,--quiet
site dir --site-dir

stack_si ze --stack-si ze
taskmastertrace file --tasknmastertrace

war n --warn - - war ni ng

10.1.5. Adding Custom Command-Line Options: the
AddOpt i on Function

Y ou can a so define your own command-line optionsfor the project withthe AddOpt i on function. The AddQOpt i on
function takes the same argumentsastheadd_opt i on method from the Python standard library module opt par se
1 (see https://docs.python.org/3/library/optparse.html).

Once you add a custom command-line option with the AddOpt i on function, the value of the option (if any) is
immediately availableusingthe Get Qpt i on function. Theargument to Get Opt i on must bethe nameof thevariable
which holds the option. If the dest keyword argument to AddQpt i on is specified, the value is the variable name.
given. If not given, itisthe name (without theleading hyphens) of thefirst long option name givento AddQpt i on after
replacing any remaining hyphen characters with underscores, since hyphens are not legal in Python identifier names.

Set Opt i on works for options added with AddOpt i on, but only if they were created with set t abl e=Tr ue in
the call to AddOpt i on (only available in SCons 4.8.0 and later).

One useful example of using this functionality isto provide a- - pr ef i x to help describe whereto install files:

AddOpt i on(
'--prefix',
dest ="' prefix',
type='string',
nar gs=1,
action='store',
metavar='D R ,
hel p="instal | ati on prefix"',

)
env = Environment (PREFI X=CGet Opti on("' prefix'))
installed foo = env.Install (' $PREFI X/ usr/bin', 'foo.in")

Defaul t (i nstal | ed foo0)

The above code usesthe Get Opt i on function to set the $PREFI X construction variableto ava ue you specify with a
command-line option of - - pr ef i x. Because $PREFI X expandsto anull string if it's not initialized, running SCons
without the option of - - pr ef i x installsthefileinthe/ usr/ bi n/ directory:

1TheAddQ)t i on function is, in fact, implemented using a subclass of opt par se. Opt i onPar ser .

Iy
=== SCONS 74

https://docs.python.org/3/library/optparse.html

Command-Linevar i abl e=val ue Build Variables

% scons -Q -n
Install file: "foo.in" as "/usr/bin/foo.in"

But specifying - - prefi x=/tnp/install on the command line causes the file to be installed in the / t np/
i nstall/usr/bin/ directory:

% scons -Q -n --prefix=/tnp/install
Install file: "foo.in" as "/tnp/install/usr/bin/foo.in"

Note

The opt par se parser which SCons uses allows option-arguments to follow their options after either an =
or space separator, however the latter form does not work well in SCons for added options and should be
avoided. SCons does not place an ordering constraint on the types of command-line arguments, so while - -

i nput =ARGisunambiguous, for - - i nput ARGit isnot possible to tell without instructions whether ARG
isan argument belonging tothei nput option or astandalone word. SCons considers words on the command
line which do not begin with hyphen as either command-line build variables or command-line targets, both
of which are made availablefor useinan SConscr i pt (seetheimmediately following sectionsfor details).
Thus, they must be collected before SConscr i pt processing takes place. AddOpt i on callsdo providethe
necessary instructions to resolve the ambiguity, but as they appear in SConscri pt files, SCons does not
have the information early enough, and unexpected things may happen, such as option-arguments appearing
inthe list of targets, and processing exceptions due to missing option-arguments.

As aresult, this usage style should be avoided when invoking scons. For single-argument options, tell your
usersto use the - - i nput =ARG form on the command line. For multiple-argument options (nar gs vaue
greater than one), set nar gs to onein the AddOpt i on call and either: combine the option-arguments into
one word with a separator, and parse the result in your own code (see the built-in - - debug option, which
allows specifying multiple arguments as a single comma-separated word, for an example of such usage);
or alow the option to be specified multiple times by setting act i on=" append' . Both methods can be
supported at the sametime.

10.2. Command-Line vari abl e=val ue Build
Variables

Y ou may want to control various aspects of your build by alowing var i abl e=val ue pairs to be specified on the
command line. For example, suppose you want to be able to build a debug version of a program by running SCons
asfollows:

% scons - Q debug=1

SCons provides an ARGUVENTS dictionary that storesall of thevar i abl e=val ue assignments from the command
line. This alows you to modify aspects of your build in response to specifications on the command line.

The following code sets the $CCFLAGS construction variable in response to the debug flag being set in the
ARGUMENTS dictionary:

env = Environment ()
debug = ARGUMENTS. get (' debug', 0)
i f int(debug):

env. Append(CCFLAGS=" -g')

Iy
=== SCONS 75

Command-Linevar i abl e=val ue Build Variables

env. Progran(' prog.c')

Thisresultsin the - g compiler option being used when debug=1 is used on the command line;

% scons - Q debug=0

CC -0 prog.o -c prog.c

CC -0 prog prog.o

% scons - Q debug=0

scons: ' is up to date.
% scons - Q debug=1

CC -0 prog.o -c -g prog.c
CC -0 prog prog.o

% scons - Q debug=1

scons: ".' is up to date.

Note

Two usage notes (both shown in the example above):

» No matter how you intend to use them, the values read from acommand line (i.e., external to the program)
are always strings. Y ou may need to do type conversion.

» When you retrieve from the ARGUMENTS dictionary, it is useful to use the Python dictionary get method,
so you can supply a default value if the variable is not given on the command line. Otherwise, the build
will fail with aKeyEr r or if thevariableisnot set.

SCons keeps track of the precise build command used to build each object file, and as a result can determine that the
object and executable files need rebuilding when the value of the debug argument has changed.

The ARGUMENTS dictionary has two minor drawbacks. First, becauseit isadictionary, it can only map each keyword
to one value, and thus only "remembers" the last setting for each keyword on the command line. This makes the
ARGUMENTS dictionary less than ideal if you want to alow specifying multiple values on the command line for a
given keyword. Second, it does not preserve the order in which the variabl e settings were specified, which isaproblem
if you want the configuration to behave differently in response to the order in which the build variable settings were
specified on the command line (Python versions since 3.6 now maintain dictionariesin insertion order, so this problem
is mitigated).

To accommodate these requirements, SCons also provides an ARGLI ST variable that gives you direct accessto build
variable settings from the command line, in the exact order they were specified, and without removing any duplicate
settings. Each element in the ARGLI ST variable isitself atwo-element list containing the keyword and the value of
the setting, and you must loop through, or otherwise select from, the elements of ARGLI ST to process the specific
settings you want in whatever way is appropriate for your configuration. For example, the following code lets you add
to the CPPDEFI NES construction variable by specifying multiple def i ne= settings on the command line:

cppdefines = []
for key, value in ARGLI ST:
if key == 'define':
cppdefi nes. append(val ue)
env = Environnment (CPPDEFI NES=cppdef i nes)
env. Qbj ect (' prog.c')

Yields the following output:

Iy
=== SCONS 76

Controlling Command-Line Build Variables

% scons - Q defi ne=FQO

CC -0 prog.o -c -DFQOO prog.c

% scons -Q defi ne=FOO defi ne=BAR
CC -0 prog.o -c -DFQCO - DBAR prog.c

Note that the ARGLI ST and ARGUMENTS variables do not interfere with each other, but rather provide dightly
different viewsinto how you specified var i abl e=val ue settings on the command line. Y ou can use both variables
in the same SCons configuration. In general, the ARGUMENTS dictionary is more convenient to use, (since you can
just fetch variable settings through Python dictionary access), and the ARGLI ST list is more flexible (since you can
examine the specific order in which the command-line variable settings were given).

10.2.1. Controlling Command-Line Build Variables

Being ableto use acommand-line build variable likedebug=1 ishandy, but it can be achoreto write specific Python
code to recognize each such variable, check for errors and provide appropriate messages, and apply the values to a
construction variable. To help with this, SCons provides a Var i abl es container class to hold definitions of such
build variables, and amechanism to apply the build variablesto a construction environment. Thisalowsyou to control
how the build variables affect construction environments.

For example, suppose that you want to set a RELEASE construction variable on the command line whenever thetime
comes to build a program for release, and that the value of this variable should be added to the build command with
the appropriate define to pass the value to the C compiler. Here's how you might do that by setting the appropriate
valuein adictionary for the $CPPDEFI NES construction variable:

vars = Vari abl es(None, ARGUVENTS)

vars. Add(' RELEASE' , def aul t =0)

env = Envi ronnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${ RELEASE}'})
env. Program(['foo.c', 'bar.c'])

ThisSConst r uct snippet first createsaVar i abl es object which usesthe valuesfrom the command-line variables
dictionary ARGUMENTS. It then uses the object's Add method to indicate that the RELEASE variable can be set on
the command line, and that if not set the default value is 0. The newly created Var i abl es object is passed to the
Envi ronnent call used to create the construction environment using avar i abl es keyword argument. This then
allows you to set the RELEASE build variable on the command line and have the variable show up in the command
line used to build each object from a C sourcefile:

% scons - Q RELEASE=1
CC -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o bar.o

TheVari abl es() call inthisexample looks alittle awkward. The function takes two optional arguments: a script
name and adictionary. In order to specify the dictionary asthe second argument, you must provide the script argument
asthefirst; since there's actually no script, use None as a sentinel value. However, if you omit al the arguments, the
default behavior is to read from the ARGUMENTS dictionary anyway, which is what we want. The example shows it
this way because the arguments were introduced in this order, but you should feel free to just leave off the arguments
if the default behavior iswhat you want.

Historical note: In old SCons (prior to 0.98.1 from 2008), these build variables were known as "command-line build
options." At that time, the class was named Opt i ons and the predefined functions to construct options were named
Bool Opti on, EnunOpti on, Li st Opti on, Pat hOpti on, PackageQpti on and AddOpt i ons (contrast
with the current names in Section 10.2.4, “Pre-Defined Build Variable Functions’, below). Because the Internet
has a very long memory, you may encounter these names in older SConscr i pt files, wiki pages, blog entries,

Iy
=== SCONS 77

Providing Help for Command-Line Build Variables

StackExchange articles, etc. These old names no longer work, but a mental substitution of “Variable” for “Option”
allows the concepts to transfer to current usage models.

10.2.2. Providing Help for Command-Line Build Variables

To make command-line build variables more useful, you may want to provide some help text to describe the available
variableswhenyou ask for help (runscons - h).Youcanwritethistext by hand, but SCons provides some assistance.
Variables objects provide a Gener at eHel pText method to generate text that describes the various variables that
have been added to it. The default text includes the help string itself plus other information such as allowed values.
(The generated text can also be customized by replacing the For mat Var i abl eHel pText method). Y ou then pass
the output from this method to the Hel p function:

vars = Vari abl es()

vars. Add(' RELEASE' , help="Set to 1 to build for rel ease', default=0)
env = Environnment (vari abl es=vars)

Hel p(vars. Gener at eHel pText (env))

scons now displays some useful text when the - h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for rel ease
default: O
actual: 0

Use scons -H for hel p about SCons built-in comrand-1ine options.

Y ou can see the help output shows the default value as well as the current actual value of the build variable.

10.2.3. Reading Build Variables From a File

Being able to specify the value of a build variable on the command line is useful, but can still become tedious if you
have to specify the variable every timeyou run SCons. To make this easier, you can provide customized build variable
settings in a Python script by providing a file name when the Var i abl es object is created:

vars = Vari abl es(' custom py')

vars. Add(' RELEASE', help="Set to 1 to build for rel ease', default=0)

env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
env. Progran(['foo.c', '"bar.c'])

Hel p(vars. Gener at eHel pText (env))

This then allows you to control the RELEASE variable by setting it in the cust om py script:
RELEASE = 1
Note that thisfile is actually executed like a Python script. Now when you run SCons:

% scons -Q
CC -0 bar.o -c -DRELEASE BU LD=1 bar.c

Iy
=== SCONS 78

Pre-Defined Build Variable Functions

cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o bar.o

And if you change the contents of cust om py to:
RELEASE = 0

The object files are rebuilt appropriately with the new variable:

% scons -Q

CC -0 bar.o -c -DRELEASE BU LD=0 bar.c
cc -o foo.o0 -c -DRELEASE BU LD=0 foo.c
cc -o foo foo.o bar.o

Finally, you can combine both methods with:
vars = Variabl es(' custom py', ARGUMENTS)

If both a variables script and a dictionary are supplied, the dictionary is evaluated last, so values from the command
line "win" if there are any duplicate keys. This rule alows you to move some common settings to a variables script,
but still be able to override those for a given build without changing the script.

10.2.4. Pre-Defined Build Variable Functions

SCons provides a number of convenience functions that provide behavior definitions for various types of command-
line build variables. These functions all return a tuple which is ready to be passed to the Add or AddVari abl es
method call. You are of course free to define your own behaviors as well.

10.2.4.1. True/False Values: the Bool Vari abl e Build Variable
Function

It is often handy to be able to specify avariable that controls asimple Boolean variable with at r ue or f al se value.
It would be even more handy to accommodate different preferencesfor how to representt r ue or f al se values. The
Bool Vari abl e function makesit easy to accommodate these common representations of t r ue or f al se.

The Bool Var i abl e function takes three arguments: the name of the build variable, the default value of the build
variable, and the help string for the variable. It then returns appropriate information for passing to the Add method
of aVari abl es object, like so:

vars = Vari abl es(' custom py')

vars. Add(Bool Vari abl e(' RELEASE', hel p='Set to build for rel ease', default=False))
env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
env. Progran(' foo.c')

With this build variable in place, the RELEASE variable can now be enabled by setting it to thevalueyes ort :

% scons - Q RELEASE=yes f 00.0
cc -o foo.o -c -DRELEASE BUI LD=True foo.c

% scons -Q RELEASE=t foo0.0

Iy
=== SCONS 79

Pre-Defined Build Variable Functions

cc -0 foo.o0 -c -DRELEASE BUI LD=True foo.c
Other valuesthat equatetot r ue includey, 1, onandal | .
Conversely, RELEASE may now be given af al se value by setting ittono or f :

% scons - Q RELEASE=no fo0o0.0
cc -o foo.o -c -DRELEASE BUI LD=Fal se foo.c

% scons - Q RELEASE=f foo0.0
cc -0 foo.o0 -c -DRELEASE BUI LD=Fal se foo.c

Other valuesthat equateto f al se includen, 0, of f and none.
Lastly, if you try to specify any other value, SCons supplies an appropriate error message:

% scons - Q RELEASE=bad_val ue foo.o0

scons: *** Error converting option: 'RELEASE
Invalid value for bool ean variabl e: 'bad_val ue'
File "/homel/ ny/ project/SConstruct”, line 3, in <nmodul e>

10.2.4.2. Single Value From a Selection: the Enunvar i abl e Build
Variable Function

Suppose that you want to allow setting a COLOR variable that selects a background color to be displayed by an
application, but that you want to restrict the choices to a specific set of alowed colors. You can set this up quite
easily usingthe EnunVar i abl e function, whichtakesalist of al | owed_val ues inaddition to the variable name,
default value, and help text arguments:

vars = Vari abl es(' custom py')
var s. Add(
Enunvari abl e(
' COLCR'
hel p=' Set background col or',
default="red",
al | owed _val ues=('red', 'green', 'blue'),
)
)
env = Envi ronnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Program(' foo.c')
Hel p(vars. Gener at eHel pText (env))

Y ou can now explicitly set the COLOR build variable to any of the specified allowed values:

% scons -Q COLOR=red foo0.0

cc -o foo.o -c -DCOLOR="red" foo0.cC
% scons - Q COLOR=bl ue foo.o0

cc -o foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green fo0o0.0

cc -o foo.o -c -DCOLOR="green" foo.c

But, importantly, an attempt to set COLORto avalue that's not in the list generates an error message:

Iy
=== SCONS 80

Pre-Defined Build Variable Functions

% scons - Q COLOR=magenta fo0o0.o0

scons: *** |nvalid value for enumvariable 'COLOR : 'nmagenta'. Valid values are: ('red, '

File "/home/ ny/ project/SConstruct”, |line 10, in <nodul e>

This example can aso serve to further illustrate help generation: the help message here picks up not only the hel p
text, but augments it with information gathered from al | owed_val ues anddef aul t :

% scons -Q -h

COLOR Set background col or (red|green| bl ue)
default: red
actual: red

Use scons -H for hel p about SCons built-in comrand-|ine options.

The EnunVar i abl e function also provides away to map alternate namesto alowed values. Suppose, for example,
you want to allow the word navy to be used as a synonym for bl ue. You do this by adding a map dictionary that
maps its key values to the desired allowed value:

vars = Vari abl es(' custom py')
vars. Add(
EnunVar i abl e(
' COLOR
hel p=' Set background col or",
defaul t="red",

al | owed_val ues=('red', 'green', 'blue'),
map={"' navy': 'blue'},
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Program(' foo.c')

Now you can supply navy on the command line, and SCons trandlates that into bl ue when it comes time to use the
COLORVvariableto build atarget:

% scons -Q COLOR=navy foo0.0
cc -o foo.o -c -DCOLOR="bl ue" foo.c

By default, when using the Enunar i abl e function, the allowed values are case-sensitive:

% scons -Q COLOR=Red fo0o0.0

scons: *** |nvalid value for enumvariable "COLOR : 'Red'. Valid values are: ('red',
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>
% scons -Q COLOR=BLUE f 00. o0

scons: *** |nvalid value for enumvariable 'COLOR : 'BLUE . Valid values are: ('red',
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>
% scons -Q COLOR=nAVY fo00.0

scons: *** |nvalid value for enumvariable 'COLOR : 'nAvY' . Valid values are: ('red,
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>

Iy
=== SCONS 81

'gree

gre

gre

Pre-Defined Build Variable Functions

The EnunVar i abl e function can take an additional i gnor ecase keyword argument that, when set to 1, tells
SConsto allow case differences when the values are specified:

vars = Vari abl es(' custom py')
vars. Add(
EnunVvari abl e(
' COLCR',
hel p=' Set background col or',
default="red',
al | owed val ues=('red', 'green', 'blue'),
map={' navy': 'blue'},
i gnor ecase=1,
)
)
env = Envi ronnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Progran(' foo.c')

Which yields the outpult:

% scons -Q COLOR=Red fo00.0

cc -o foo.o -c -DCOLOR="Red" foo0.cC
% scons - Q COLOR=BLUE foo0.0

cc -o foo.o -c -DCOLOR="BLUE" foo.cC
% scons - Q COLOR=nAVY foo0.0

cc -o foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

Notice that ani gnor ecase value of 1 preserves the case-spelling supplied, only ignoring the case for matching.
If you want SCons to trandate the names into lower-case, regardless of the case used by the user, specify an
i gnor ecase vaueof 2:

vars = Vari abl es(' custom py')
var s. Add(
EnunVari abl e(
' COLOR
hel p=' Set background col or',
defaul t="red",
al | owed_val ues=('red', 'green', 'blue'),
map={' navy': 'blue'},
i gnor ecase=2,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Progran(' foo.c')

Now SCons usesvalues of r ed, gr een or bl ue regardless of how those values are spelled on the command line:

% scons -Q COLOR=Red fo0o0.0
cc -o foo.o -c -DCOLOR="red" foo.c
% scons -Q COLOR=nAVY fo00.0

Iy
=== SCONS 82

Pre-Defined Build Variable Functions

cc -0 foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=CREEN f 00. 0
cc -o foo.o -c -DCOLOR="green" foo.c

10.2.4.3. Multiple Values From a List: the Li st Var i abl e Build
Variable Function

Another way in which you might want to control abuild variable is to specify alist of allowed values, of which one
or more can be chosen (where Enun¥ar i abl e alows exactly one value to be chosen). SCons provides this through
the Li st Var i abl e function. If, for example, you want to be able to set a COLORS variable to one or more of the
allowed values:

vars = Vari abl es(' custom py')
vars. Add(
Li st Vari abl e(
'COLORS', hel p='List of colors', default=0, nanes=['red', 'green', 'blue']
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLORS': '"${COLORS}"'})
env. Progran(' foo.c')

You can now specify a comma-separated list of allowed values, which get trandated into a space-separated list for
passing to the build commands:

% scons - Q COLORS=red, bl ue foo.o

cc -0 foo.o -c -DCOLORS="red - Dbl ue" foo.c

% scons - Q COLORS=bl ue, green, red foo.o0

cc -o foo.o0 -c -DCOLORS="bl ue -Dgreen -Dred" foo.c

In addition, the Li st Var i abl e function lets you specify explicit keywords of al | or none to select al of the
allowed values, or none of them, respectively:

% scons -Q COLORS=al |l foo.0

cc -0 foo.o0 -c -DCOLORS="red -Dgreen -Dblue" foo.c
% scons - Q COLORS=none fo00.0

cc -o foo.o -c -DCOLORS="" foo0.cC

And, of course, anillegal value still generates an error message:

% scons - Q COLORS=magenta foo.o0

scons: *** |nvalid value(s) for variable 'COORS : 'magenta'. Valid values are: blue, green
File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

Y ou can use this last characteristic as away to enforce at least one of your valid options being chosen by specifying
the valid values with the nanes parameter and then giving avalue not in that list asthe def aul t parameter - that
way if no value is given on the command line, the default is chosen, SCons errors out as thisisinvalid. The example
is, in fact, set up that way by using O asthe default:

% scons -Q foo.o0

scons: *** |nvalid value(s) for variable "COORS : '0'. Valid values are: blue,green,red,a
File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

Iy
=== SCONS 83

Pre-Defined Build Variable Functions

Thistechnique works for EnunVar i abl e aswell.

10.2.4.4. Path Names: the Pat hVar i abl e Build Variable Function

SCons provides a Pat hVar i abl e function to make it easy to create a build variable to control an expected path
name. If, for example, you need to define a preprocessor macro that controls the location of a configuration file:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVari abl e(
'"CONFI G, help="Path to configuration file', default='/etc/ny_config'
)
)

env = Environnent (vari abl es=vars, CPPDEFI NES={' CONFI G FILE : '"$CONFI G''})
env. Progran(' foo.c')

This allows you to override the CONFI G build variable on the command line as necessary:

% scons -Q foo.0

cc -o foo.o -c -DCONFI G_FI LE="/etc/ ny_config" foo.c
% scons - Q CONFI G=/usr/ | ocal /etc/other_config foo.o
scons: foo.0' is up to date.

By default, Pat hVar i abl e checksto make sure that the specified path exists and generates an error if it doesn't:

% scons - Q CONFI G=/ does/ not/ exi st foo0.0

scons: *** Path for variable ' CONFIG does not exist: /does/not/exist
File "/homel/ ny/ project/SConstruct”, line 7, in <nmodul e>

Pat hVar i abl e provides anumber of methods that you can use to change this behavior. If you want to ensure that
any specified paths are, in fact, files and not directories, use the Pat hVar i abl e. Pat hl sFi | e method as the
validation function:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVari abl e(
' CONFI G,
hel p=" Path to configuration file',
default="/etc/ny_config',
val i dat or =Pat hVari abl e. Pat hl sFi | e,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' CONFI G FILE : '"$CONFIG''})
env. Progran(' foo.c')

Conversely, to ensure that any specified paths are directories and not files, use the Pat hVar i abl e. Pat hl sDi r
method as the validation function:

vars = Vari abl es(' custom py')
vars. Add(

Iy
=== SCONS 84

Pre-Defined Build Variable Functions

Pat hVar i abl e(
'DBDI R,
hel p=' Path to dat abase directory',
defaul t="/var/ nmy_dbdir",
val i dat or =Pat hVari abl e. Pat hl sDi r,
)
)
env = Environnent (vari abl es=vars, CPPDEFINES={'DBDIR : '"$DBDI R''})
env. Program(' foo.c')

If you want to make sure that any specified paths are directories, and you would like the directory created if it doesn't
already exist, usethe Pat hVar i abl e. Pat hl sDi r Cr eat e method as the validation function:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVar i abl e(
' DBDI R,
hel p=' Path to dat abase directory',
defaul t="/var/ny_dbdir"',
val i dat or =Pat hVari abl e. Pat hl sDi r Cr eat e,
)
)
env = Environnent (vari abl es=vars, CPPDEFINES={'DBDIR : '"$DBDI R''})
env. Progran(' foo.c')

Lastly, if you don't care whether the path exists, is afile, or a directory, use the Pat hVar i abl e. Pat hAccept
method to accept any path you supply:

vars = Vari abl es(' custom py')
vars. Add(
Pat hVari abl e(
" QUTPUT' ,
hel p=' Path to output file or directory',
def aul t =None,
val i dat or =Pat hVar i abl e. Pat hAccept ,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' QUTPUT' : ' "$OQUTPUT"'})
env. Progran(' foo.c')

10.2.4.5. Enabled/Disabled Path Names: the PackageVar i abl e
Build Variable Function
Sometimes you want to give even more control over a path name variable, allowing them to be explicitly enabled or

disabled by using yes or no keywords, in addition to allowing supplying an explicit path name. SCons provides the
PackageVar i abl e function to support this:

vars = Vari abl es("custom py")

Iy
=== SCONS 85

Adding Multiple Command-Line Build Variables at Once

vars. Add(
PackageVari abl e(" PACKAGE", hel p="Locati on package"”, default="/opt/l ocation")
)
env = Environnent (vari abl es=vars, CPPDEFI NES={" PACKAGE": '"S$PACKAGE"'})
env. Program("foo.c")

When the SConscri pt file uses the PackageVari abl e function, you can still use the default or supply an
overriding path name, but you can now explicitly set the specified variable to avalue that indicates the package should
be enabled (in which case the default should be used) or disabled:

% scons -Q foo.0

cc -o foo.o -c - DPACKAGE="/opt/I| ocation" foo.c

% scons - Q PACKAGE=/usr/ | ocal/l ocation foo.0

cc -o foo.o -c -DPACKAGE="/usr/local /| ocation" foo.c
% scons - Q PACKAGE=yes fo00.0

cc -o foo.o -c - DPACKAGE="/opt/I| ocation" foo.c

% scons - Q PACKAGE=no fo00.o0

cc -o foo.o -c - DPACKAGE="Fal se" foo.c

10.2.5. Adding Multiple Command-Line Build Variables at
Once

Lastly, SCons providesaway to add multiple build variablestoaVar i abl es object at once. Instead of having to call
the Add method multiple times, you can call the AddVar i abl es method with the build variables to be added to the
object. Each build variable is specified as either atuple of arguments, or as a call to one of the pre-defined functions
for pre-packaged command-line build variables, which returns such atuple. Note that an individual tuple cannot take
keyword arguments in the way that a call to Add or one of the build variable functions can. The order of variables
givento AddVar i abl es does not matter.

vars = Vari abl es()
vars. AddVar i abl es(
("RELEASE', 'Set to 1 to build for rel ease', 0),
("CONFIG, '"Configuration file', '/etc/ny_config'),
Bool Vari abl e(* war ni ngs', hel p='conpilation with -Wall and sinmilar', default=True),
EnunVar i abl e(
' debug’ ,
hel p=' debug out put and synbol s',
def aul t ="' no'
al | owed_val ues=("'yes', 'no', 'full"),
map={},
i gnor ecase=0
).
Li st Vari abl e(
'shared',
hel p="libraries to build as shared libraries",
default="al | ",
nanmes=li st _of |ibs,
).
PackageVari abl e(
'x11', hel p='use X11 installed here (yes = search sone pl aces)', default='yes

).

b4

SCONS 86

Handling Unknown Command-Line Build Variables: the
UnknownVar i abl es Function

Pat hVari abl e(* gqtdir', hel p="where the root of @ is installed , default=qtdir),

10.2.6. Handling Unknown Command-Line Build
Variables: the UnknownVar i abl es Function

Humans, of course, occasionally misspell variable namesin their command-line settings. SCons does not generate an
error or warning for any unknown variables specified on the command line, because it can not reliably tell whether
a given "misspelled" variable is really unknown and a potential problem or not. After all, you might be processing
arguments directly using ARGUMVENTS or ARGLI ST with some Python code in your SConscri pt file.

If, however, youareusingaVar i abl es object to defineaspecific set of command-line build variablesthat you expect
to be able to set, you may want to provide an error message or warning of your own if a variable setting is specified
that is not among the defined list of variable names known to the Var i abl es object. Y ou can do thisby calling the
UnknownVar i abl es method of the Var i abl es object to get the settings Var i abl es did not recognize:

vars = Vari abl es(None)
vars. Add(' RELEASE', help="Set to 1 to build for rel ease', default=0)
env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
unknown = vars. UnknownVari abl es()
i f unknown:
print("Unknown variables: %" %" ".join(unknown. keys()))
Exit(1)
env. Progran(' foo.c')

TheUnknownVar i abl es method returnsadictionary containing the keywords and values of any variables specified
on the command line that are not among the variables known to the Var i abl es object (from having been specified
using the Vari abl es object's Add method). The example above, checks whether the dictionary returned by
UnknownVar i abl es isnon-empty, and if so prints the Python list containing the names of the unknown variables
and then callsthe Exi t function to terminate SCons:

% scons - Q NOT_KNOWN=f oo
Unknown vari abl es: NOT_KNOMW

Of course, you can process the items in the dictionary returned by the UnknownVar i abl es function in any way
appropriate to your build configuration, including just printing a warning message but not exiting, logging an error
somewhere, etc.

Note that you must delay the call of UnknownVar i abl es until after you have applied the Var i abl es objecttoa
construction environment with the var i abl es= keyword argument of an Envi r onnent call: the variablesin the
object are not fully processed until this has happened.

10.3. Command-Line Targets

10.3.1. Fetching Command-Line Targets: the
COMVAND LI NE TARCETS Variable

SCons provides a COVWAND LI NE_TARGETS variable that lets you fetch the list of targets that were specified on
the command line. Y ou can use the targets to manipul ate the build in any way you wish. As asimple example, suppose

Iy
=== SCONS 87

Controlling the Default Targets. the Def aul t Function

that you want to print a reminder whenever a specific program is built. You can do this by checking for the target in
the COMWAND_LI NE_TARGETS list:

if "bar' in COMWAND_ LI NE_TARGETS:

print("Don't forget to copy “bar' to the archive!")
Def aul t (Progran(' foo.c'))
Progran(' bar.c')

Now, running SCons with the default target works as usual, but explicitly specifying the bar target on the command
line generates the warning message:

% scons -Q

cc -o foo.o -c foo.c

cc -o foo foo.o

% scons -Q bar

Don't forget to copy bar' to the archive!
CC -0 bar.o -c bar.c

CC -0 bar bar.o

Another practical use for the COVMMAND_LI NE_TARCETS variable might be to speed up a build by only reading
certain subsidiary SConscr i pt filesif aspecific target is requested.

10.3.2. Controlling the Default Targets: the Def aul t
Function

Y ou can control whichtargets SConsbuildsby default - that is, when there are no targets specified on the command line.
As mentioned previously, SCons normally builds every target in or below the current directory unless you explicitly
specify one or more targets on the command line. Sometimes, however, you may want to specify that only certain
programs, or programs in certain directories, should be built by default. Y ou do thiswith the Def aul t function:

env = Environnent ()

hell o = env. Progran(' hello.c")
env. Progran(' goodbye. c')

Def aul t (hel | 0)

ThisSConst r uct fileknowshow to build two programs, hel | 0 andgoodbye, but only buildsthehel | o program
by default:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q

scons: " hello' is up to date
% scons - Q goodbye

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

Note that, even when you use the Def aul t function in your SConst r uct file, you can still explicitly specify the
current directory (.) on the command line to tell SConsto build everything in (or below) the current directory:

% scons -Q .

Iy
=== SCONS 88

Controlling the Default Targets. the Def aul t Function

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

You can aso call the Def aul t function more than once, in which case each call adds to the list of targets to be
built by default:

env = Environment ()

progl = env. Progran(' progl.c')
Def aul t (progl)

prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (pr og3)

Or you can specify more than onetarget in asingle call to the Def aul t function;

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (progl, prog3)

Either of these last two examples build only the progl and prog3 programs by default:

% scons -Q

cc -0 progl.o -c progl.c
cCc -0 progl progl.o

ccC -0 prog3.0 -c prog3.c
cc -0 prog3 prog3.o0

% scons -Q .

CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

You can list adirectory as an argument to Def aul t :

env = Environment ()

env. Program([' progl/main.c', 'progl/foo.c'])
env. Program([' prog2/ main.c', 'prog2/bar.c'])
Def aul t (" progl')

In which case only the target(s) in that directory are built by default:

% scons -Q

cc -0 progl/foo.o -c progl/foo.c

cc -0 progl/main.o -c progl/ main.c

cc -0 progl/main progl/ main.o progl/foo.o
% scons -Q

scons: "progl' is up to date.

% scons -Q .

Iy
=== SCONS 89

Controlling the Default Targets. the Def aul t Function

CC -0 prog2/bar.o -c prog2/bar.c
CC -0 prog2/main.o -c prog2/ main.c
cC -0 prog2/ main prog2/ main.o prog2/ bar.o

Lastly, if for some reason you don't want any targets built by default, you can use the Python None variable:

env = Environnent ()

progl = env. Progran{(' progl.c')
prog2 = env. Progran{(' prog2.c')
Def aul t (None)

Which would produce build output like:

% scons -Q

scons: *** No targets specified and no Default() targets found. Stop.
Found nothing to build

% scons -Q .

cc -0 progl.o -c progl.c

cc -0 progl progl.o

CC -0 prog2.0 -c prog2.c

CC -0 prog2 prog2.o

10.3.2.1. Fetching the List of Default Targets: the DEFAULT TARGETS
Variable

SCons provides a DEFAULT _TARGETS variable that lets you get at the current list of default targets specified by
calstothe Def aul t function or method. The DEFAULT _TARGETS variable has two important differencesfrom the
COMVAND LI NE_TARCGETS variable. First, the DEFAULT _TARGETS variableisalist of internal SCons nodes, so
you need to convert the list elements to strings if you want to print them or look for a specific target name. You can
dothiseasily by calling the st r onthe elementsin alist comprehension:

progl = Progran(' progl.c')
Def aul t (progl)
print ("DEFAULT_TARCETS is %" % [str(t) for t in DEFAULT_TARGETS])

(Keep in mind that the manipulation of the DEFAULT_TARGETS list takes place during the first phase when SCons
isreading up the SConscr i pt files, whichisobviousif you leave off the - Qflag when you run SCons:)

% scons

scons: Readi ng SConscript files ...
DEFAULT_TARGETS is ['progl']

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cc -0 progl progl.o

scons: done buil ding targets.

Second, the contents of the DEFAULT_TARGETS list changes in response to callsto the Def aul t function, asyou
can see from the following SConst r uct file:

Iy
=== SCONS 90

Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

progl = Progran(' progl.c')

Def aul t (progl)

print (" DEFAULT _TARGETS is now %" % [str(t) for t in DEFAULT TARGETS])
prog2 = Progran('prog2.c')

Def aul t (pr 0g2)

print (" DEFAULT _TARGETS is now %" % [str(t) for t in DEFAULT TARGETS])

Which yields the output:;

% scons

scons: Readi ng SConscript files ...
DEFAULT TARGETS is now [' progl']
DEFAULT TARGETS is now ['progl', 'prog2']
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cc -0 progl progl.o

CC -0 prog2.0 -c prog2.c

CC -0 prog2 prog2.o0

scons: done buil ding targets.

In practice, this simply means that you need to pay attention to the order in which you call the Def aul t function
and refer to the DEFAULT _TARGETS list, to make sure that you don't examine the list before you have added the
default targets you expect to find in it.

10.3.3. Fetching the List of Build Targets, Regardless of
Origin: the BUl LD _TARGETS Variable

You have aready seen the COMMAND_LI NE_TARGETS variable, which contains a list of targets specified on the
command line, and the DEFAULT_TARCETS variable, which contains a list of targets specified via cals to the
Def aul t method or function. Sometimes, however, you want alist of whatever targets SConstriesto build, regardless
of whether the targets came from the command line or aDef aul t call. You could code this up by hand, asfollows:

i f COMVAND_LI NE_TARCETS:

targets = COMMAND LI NE_TARGETS
el se:

targets = DEFAULT_TARCETS

SCons, however, provides a convenient BUI LD _TARCGETS variable that eliminates the need for this by-hand
manipulation. Essentially, the BUI LD_TARGETS variable contains a list of the command-line targets, if any were
specified, and if no command-line targets were specified, it contains a list of the targets specified viathe Def aul t
method or function.

Because BUI LD_TARGETS may contain alist of SCons nodes, you must convert the list elements to strings if you
want to print them or look for a specific target name, just like the DEFAULT_TARCGETS list:

progl = Progran('progl.c')

Program(' prog2.c')

Def aul t (progl)

print("BU LD TARGETS is %" % ([str(t) for t in BU LD TARCGETS])

Iy
=== SCONS 91

Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

Notice how the value of BUI LD _TARGETS changes depending on whether atarget is specified on the command line
- BUI LD_TARCETS takes from DEFAULT_TARGETS only if there are no COVMAND _LI NE_TARCGETS:

% scons -Q

BU LD TARGETS is ['progl']
cc -0 progl.o -c progl.c
cc -0 progl progl.o

% scons -Q prog2

BUI LD TARGETS is ['prog2']
CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

% scons -Q -c .

BU LD TARGETS is ['."]
Renoved progl. o

Renoved progl

Renoved prog2.o

Renoved prog2

Iy
=== SCONS 92

11 Installing Files in Other

Directories: the | nst al |
Builder

Once a program is built, it is often appropriate to install it in another directory for public use. You usethel nst al |
method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environnent ()
hell o = env. Progran(' hello.c")
env.Install ('/usr/bin', hello)

Note, however, that installing afileis still considered atype of file"build.” Thisisimportant when you remember that
the default behavior of SConsisto build filesin or below the current directory. If, asin the example above, you are
installing filesin adirectory outside of thetop-level SConst r uct file'sdirectory tree, you must specify that directory
(or ahigher directory, such as/) for it to install anything there:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q /usr/bin

Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination directory in which the program (or
other file) should be installed. A call to Def aul t can be used to add the directory to the list of default targets,
removing the need to type it, but sometimes you don't want to install on every build. Thisisan areawherethe Al i as
function comes in handy, alowing you, for example, to create a pseudo-target named i nst al | that can expand to
the specified destination directory:

env = Environnent ()

hell o = env. Progran(' hello.c')
env.Install ('/usr/bin', hello)
env.Alias('install', '/usr/bin")

This then yields the more natural ability to install the program in its destination as a separate invocation, as follows:

Installing Multiple Filesin a Directory

% scons -Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q instal

Install file: "hello" as "/usr/bin/hello"

11.1. Installing Multiple Files in a Directory

You caninstall multiple filesinto adirectory ssimply by calling thel nst al | function multiple times:

env = Environnent ()

hello = env. Progran(' hello.c")
goodbye = env. Progran(' goodbye.c')
env.Install ('/usr/bin', hello)
env.Install ('/usr/bin', goodbye)
env.Alias('install', '/usr/bin")

Or, more succinctly, listing the multiple input filesin alist (just like you can do with any other builder):

env = Environment ()

hell o = env. Progran(' hello.c")

goodbye = env. Progran{(' goodbye. c')
env.Install ('/usr/bin', [hello, goodbye])
env.Alias('install', '"/usr/bin")

Either of these two examplesyidlds:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye"
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name

Thel nst al I method preserves the name of the file when it is copied into the destination directory. If you need to
change the name of the file when you copy it, usethe | nst al | As function:

env = Environnent ()

hello = env. Progran(' hello.c")

env. I nstall As('/usr/bin/hello-new , hello)
env.Alias('install', '"/usr/bin")

Thisinstallsthe hel | o program with the name hel | o- newasfollows:

% scons -Q instal
cc -0 hello.o -c hello.c

Iy
=== SCONS 94

Installing Multiple Files Under Different Names

cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new

11.3. Installing Multiple Files Under Different
Names

If you have multiple files that al need to be installed with different file names, you can either call thel nst al | As
function multiple times, or as a shorthand, you can supply same-length lists for both the target and source arguments:

env = Environnent ()
hell o = env. Progran(' hello.c')
goodbye = env. Progran{(' goodbye. c')
env.Install As(['/usr/bin/hello-new ,
"/ usr/ bi n/ goodbye- new],
[hel | o, goodbye])
env.Alias('install', '/usr/bin")

In this case, the | nst al | As function loops through both lists simultaneously, and copies each source file into its
corresponding target file name:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye-new'
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello-new

11.4. Installing a Shared Library

If ashared library is created with the $SHLI BVERSI ONvariable set, sconswill create symbolic links as needed based
on that variable. To properly install such alibrary including the symbolic links, usethe | nst al | Ver si onedLi b
function.

For example, on aLinux system, thisinstruction:
foo = env. SharedLi brary(target="fo00", source="foo.c", SHLIBVERSI ON="1.2.3")

Will produce a shared library | i bf 00. so. 1. 2. 3 and symbolic links | i bf 00. so and | i bf 00. so. 1 which
pointto | i bf 0o. so. 1. 2. 3. You can use the Node returned by the Shar edLi br ary builder in order to install
thelibrary and its symbolic links in one go without having to list them individually:

env. I nst al | Ver si onedLi b(target="1ib", source=fo00)

On systems which expect a shared library to be installed both with a name that indicates the version, for run-
time resolution, and as a plain name, for link-time resolution, the | nst al | Ver si onedLi b function can be used.
Symbolic links appropriate to the type of system will be generated based on symlinks of the source library.

Iy
=== SCONS 95

12 Platform-Independent File
System Manipulation

SCons provides a number of platform-independent functions, called f act or i es, that perform common file system
manipulations like copying, moving or deleting files and directories, or making directories. These functions are
fact ori es because they don't perform the action at the time they're called, they each return an Action object that
can be executed at the appropriate time.

12.1. Copying Files or Directories: The Copy
Factory

Suppose you want to arrange to make a copy of afile, and don't have a suitable pre-existing builder. 1 One way would
be to use the Copy action factory in conjunction with the Command builder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at the time
file.out ishbuilt, and that the order of the arguments is the same as that of a builder itself--that is, target first,
followed by source:

% scons -Q
Copy("file.out", "file.in")

Y ou can, of course, name afile explicitly instead of using $TARGET or $SOURCE:
Conmmand("file.out", [], Copy("S$TARGET", "file.in"))
Which executes as.

% scons -Q
Copy("file.out", "file.in")

1 Unfortunately, in the early days of SCons design, we used the name Copy for the function that returns a copy of the environment, otherwise that
would be the logical choice for aBuilder that copies afile or directory tree to atarget location.

Deleting Files or Directories: The Del et e Factory

The usefulness of the Copy factory becomes more apparent when you useitin alist of actions passed to the Command
builder. For example, suppose you needed to run afile through a utility that only modifies files in-place, and can't
"pipe" input to output. One solution isto copy the source file to atemporary file name, run the utility, and then copy
the modified temporary file to the target, which the Copy factory makes extremely easy:

Command(
“file.out",
“file.in",
action=[
Copy("tempfile", "$SOURCE"),
"modi fy tenpfile",
Copy (" $TARGET", "tenpfile"),
1,
)

The output then looks like:

% scons -Q

Copy("tenpfile", "file.in")
nodi fy tempfile
Copy("file.out", "tenpfile")

The Copy factory has athird optional argument which controls how symlinks are copied.

Synbolic |ink shallow copied as a new synbolic |ink:
Command(" Li nkln", "LinkQut", Copy("$TARGET", "$SOURCE", sym inks=True))

Synbolic link target copied as a file or directory:
Command(" Linkln", "FileO D rectoryQut", Copy("$TARGET", "S$SOURCE", sym inks=Fal se))

12.2. Deleting Files or Directories: The Del et e
Factory

If you need to delete a file, then the Del et e factory can be used in much the same way as the Copy factory. For
example, if we want to make sure that the temporary file in our last example doesn't exist before we copy to it, we
could add Del et e to the beginning of the command list:

Command(
"file.out",
"file.in",
acti on=[
Del ete("tenpfile"),
Copy("tenpfile", "$SOURCE"),
"modi fy tenpfile”,
Copy (" $TARGET", "tenpfile"),
1,
)
S
'—‘-‘SCONS 97

Moving (Renaming) Files or Directories. The Move
Factory

Which then executes as follows:

% scons -Q

Del ete("tenpfile")
Copy("tempfile”, "file.in")
nodi fy tempfile
Copy("file.out", "tenpfile")

Of course, like all of these Action factories, the Del et e factory also expands $TARGET and $SOURCE variables
appropriately. For example:

Comand(
"file.out",
"file.in",
acti on=[
Del et e(" $TARCET") ,
Copy (" $TARGET", "$SOURCE"),

1.

Executes as:

% scons -Q
Delete("file.out")
Copy("file.out", "file.in")

Note, however, that you typically don't need to call the Del et e factory explicitly in this way; by default, SCons
deletes its target(s) for you before executing any action.

One word of caution about using the Del et e factory: it has the same variable expansions available as any other
factory, including the $SOURCE variable. Specifying Del et e(" $SOURCE") is not something you usually want to
do!

12.3. Moving (Renaming) Files or Directories:
The Mbve Factory

The Mbve factory alows you to rename afile or directory. For example, if we don't want to copy the temporary file,
we could use:

Command(
"file.out",
"file.in",
act i on=[

Copy("tenpfile", "$SOURCE"),

"modi fy tenpfile”,

Move(" $TARGET", "tenmpfile"),
] 1

Iy
=== SCONS 98

Updating the Modification Time of aFile: The Touch
Factory

Which would execute as:
% scons -Q
Copy("tenpfile", "file.in")

nodi fy tempfile
Move("file.out", "tenpfile")

12.4. Updating the Modification Time of a File:
The Touch Factory

If you just need to update the recorded modification time for afile, use the Touch factory:

Command(
"file.out",
"file.in",
act i on=[

Copy (" $TARGET", "$SOURCE"),
Touch(" $TARCGET"),

Which executes as:

% scons -Q
Copy("file.out", "file.in")
Touch("file.out")

12.5. Creating a Directory: The Mkdi r Factory

If you need to create a directory, use the Mkdi r factory. For example, if we need to process a file in a temporary
directory in which the processing tool will create other files that we don't care about, you could use:

Command(
"file.out",
"file.in",
action=[

Del ete("tenpdir"),

Mkdir("tempdir"),

Copy("tenpdir/${SOURCE. file}", "$SOURCE"),
"process tenpdir",

Move(" $TARGET", "tenpdir/output_file"),

Del ete("tenpdir"),

Which executes as:

% scons -Q
Del ete("tenpdir™)

Iy
=== SCONS 99

Changing File or Directory Permissions: The Chnod
Factory

Mkdir("tenpdir")

Copy("tempdir/file.in", "file.in")

process tenpdir

Move("file.out", "tenpdir/output file")

scons: *** [file.out] tenpdir/output file: No such file or directory

12.6. Changing File or Directory Permissions:
The Chnod Factory

To change permissions on a file or directory, use the Chnod factory. The permission argument uses POSIX-style
permission bits and should typically be expressed as an octal, not decimal, number:

Command(
"file.out",
"file.in",
acti on=[

Copy (" $TARGET", "$SOURCE"),
Chnod(" $TARGET", 00755),

Which executes:

% scons -Q
Copy("file.out", "file.in")
Chnod("file.out", 00755)

12.7. Executing an action immediately: the
Execut e Function

We've been showing you how to use Action factoriesinthe Cormand function. Y ou can al so execute an Action returned
by afactory (or actualy, any Action) at thetimethe SConscr i pt fileisread by using the Execut e function. For
example, if we need to make sure that a directory exists before we build any targets,

Execute(Mkdir (' /tnp/ ny_tenp directory'))

Notice that thiswill create the directory whilethe SConscr i pt fileisbeing read:

% scons

scons: Readi ng SConscript files ...
Mkdir("/tmp/ nmy_tenp _directory")
scons: done readi ng SConscript files.
scons: Building targets ...

scons: ~.' is up to date.

scons: done buil ding targets.

If you're familiar with Python, you may wonder why you would want to use this instead of just calling the native
Python os. nkdi r () function. The advantage here is that the Mkdi r action will behave appropriately if the user

Iy
=== SCONS 100

Executing an action immediately: the Execut e Function

specifiesthe SCons - n or - g options--that is, it will print the action but not actually make the directory when - n is
specified, or make the directory but not print the action when - q is specified.

The Execut e function returnsthe exit status or return value of the underlying action being executed. It will also print
an error message if the action fails and returns a non-zero value. SCons will not, however, actually stop the build if
the action fails. If you want the build to stop in response to afailurein an action called by Execut e, you must do so
by explicitly checking the return value and calling the Exi t function (or a Python equivalent):

if Execute(Mdir('/tnp/ny_tenp directory')):
A problem occurred while making the tenp directory.
Exit (1)

Iy
=== SCONS 101

13 Controlling Removal of
Targets

There are two occasions when SCons will, by default, remove target files. The first is when SCons determines that
atarget file needs to be rebuilt and removes the existing version of the target before executing The second is when
SConsisinvoked with the - ¢ option to "clean" atree of its built targets. These behaviors can be suppressed with the
Pr eci ous and NoCl ean functions, respectively.

13.1. Preventing target removal during build:
the Preci ous Function

By default, SCons removestargets before building them. Sometimes, however, thisis not what you want. For example,
you may want to update a library incrementally, not by having it deleted and then rebuilt from all of the constituent
object files. In such cases, you can use the Pr eci ous method to prevent SCons from removing the target before
itisbuilt:

env = Envi ronnment (RANLI BCOVE' ')
lib env. Library('foo', ['fl.c', 'f2.¢', 'f3.¢c'])
env. Preci ous(!lib)

Although the output doesn't look any different, SCons does not, in fact, delete the target library before rebuilding it:

% scons -Q

cc -o fl.o-c fil.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0

SConswill, however, still delete files marked as Pr eci ous when the - ¢ option is used.

13.2. Preventing target removal during clean:
the NoCl ean Function

By default, SCons removes all built targets when invoked with the - ¢ option to clean a source tree of built targets.
Sometimes, however, thisis not what you want. For example, you may want to remove only intermediate generated

Removing additional files during clean: the Cl ean
Function

files (such asobject files), but leave thefinal targets (the libraries) untouched. In such cases, you can usethe NoCl ean
method to prevent SCons from removing atarget during a clean:

env = Envi ronnment (RANLI BCOVE' ')
lib = env.Library('foo', ['fl.c', 'f2.¢c', '"f3.¢c'])
env. NoCl ean(| i b)

Notice that thel i bf 0o. a isnot listed as aremoved file:

% scons -Q

cc -ofl.o-cfl.c

cc -o f2.0-c f2.c

cc -o f3.0-c f3.c

ar rc libfoo.a f1.0 f2.0 f3.0

% scons -cC

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved f1.0

Renoved f 2.0

Renoved f 3.0

scons: done cl eani ng targets.

13.3. Removing additional files during clean:
the C ean Function

There may be additional files that you want removed when the - ¢ option is used, but which SCons doesn't know
about because they're not normal target files. For example, perhaps a command you invoke creates a log file as part
of building the target file you want. Y ou would like the log file cleaned, but you don't want to have to teach SCons
that the command "builds' two files.

You can use the Cl ean function to arrange for additional files to be removed when the - ¢ option is used. Notice,
however, that the Cl ean function takes two arguments, and the second argument is the name of the additional file
you want cleaned (f 0o. | og in this example):

t = Conmand('foo.out', 'foo.in', 'build -o $TARGET $SOURCE')
Clean(t, 'foo.log")

Thefirst argument isthetarget with which you want the cleaning of thisadditional file associated. Inthe above example,
we've used the return value from the Command function, which representsthe f 0o. out target. Now whenever the
f 00. out targetis cleaned by the - ¢ option, thef 0o. | og filewill be removed as well:

% scons -Q

build -o foo.out foo.in
% scons -Q -c

Renmpoved f oo. out

Renmoved f oo. | og

Iy
=== SCONS 103

14 Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is nearly always divided into a
hierarchy of directories. Organizing alarge software build using SCons involves creating a hierarchy of build scripts
which are connected together using the SConscr i pt function.

14.1. SConscri pt Files

Aswe've dready seen, the build script at the top of thetreeiscalled SConst r uct . Thetop-level SConst r uct file
canusetheSConscri pt functiontoincludeother subsidiary scriptsin the build. These subsidiary scriptscan, inturn,
use the SConscr i pt function to include still other scriptsin the build. By convention, these subsidiary scripts are
usually named SConscr i pt . For example, atop-level SConst r uct file might arrange for four subsidiary scripts
to be included in the build as follows:

SConscri pt (
[
"drivers/display/ SConscript',
"drivers/ nmouse/ SConscri pt',
' par ser/ SConscri pt',
‘utilities/SConscript',

In this case, the SConst r uct filelists all of the SConscri pt filesin the build explicitly. (Note, however, that
not every directory in the tree necessarily hasan SConscr i pt file) Alternatively, thedr i ver s subdirectory might
contain an intermediate SConscr i pt file, in which casethe SConscri pt cal inthetop-level SConst ruct file
would look like:

SConscri pt (['drivers/ SConscript', 'parser/SConscript', '"utilities/SConscript'])
And the subsidiary SConscr i pt fileinthedri ver s subdirectory would look like:

SConscri pt ([' di spl ay/ SConscri pt', 'nouse/ SConscript'])

Path Names Are Relative to the SConscr i pt Directory

Whether you list all of theSConscr i pt filesinthetop-level SConst r uct file, or placeasubsidiary SConscr i pt
filein intervening directories, or use some mix of the two schemes, is up to you and the needs of your software.

14.2. Path Names Are Relative to the
SConscri pt Directory

Subsidiary SConscr i pt filesmakeit easy to create abuild hierarchy because all of the file and directory namesin a
subsidiary SConscr i pt filesareinterpreted relativetothedirectory inwhichthat SConscr i pt filelives. Typicaly,
thisallowsthe SConscr i pt file containing the instructions to build atarget file to live in the same directory as the
source files from which the target will be built, making it easy to update how the software is built whenever files are
added or deleted (or other changes are made). It also tends to keep scripts more readabl e as they don't need to befilled
with complex paths.

For example, suppose we want to build two programs pr ogl and pr 0g2 in two separate directories with the same
names as the programs. One typical way to do this would be with atop-level SConst r uct filelikethis:

SConscri pt ([' progl/ SConscript', 'prog2/ SConscript'])
And subsidiary SConscr i pt filesthat look like this;

env = Environnent ()
env. Progran(' progl', ['main.c', 'fool.c', 'foo02.c'])

And this;

env = Environment ()
env. Program(' prog2', ['main.c', 'barl.c', 'bar2.c'])

Then, when we run SConsin the top-level directory, our build looks like:

% scons -Q

cc -o progl/fool.o -c progl/fool.c

cc -0 progl/foo2.0 -c progl/foo2.c

cc -0 progl/main.o -c progl/ main.c

cc -0 progl/progl progl/ main.o progl/fool.o progl/foo2.o0
cCc -0 prog2/barl.o -c prog2/barl.c

CC -0 prog2/bar2.0 -c prog2/ bar2.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ prog2 prog2/ mai n.o prog2/barl.o prog2/bar2.0

Notice the following: First, you can have files with the same names in multiple directories, like mai n. ¢ in the above
example. Second, when building, SCons staysin thetop-level directory (wherethe SConst r uct filelives) andissues
commands that use the path names from the top-level directory to the target and source files within the hierarchy. This
works because SCons reads all the SConscript files in one pass, interpreting each in its local context, building up a
tree of information, before starting to execute the needed builds in a second pass. This is quite different from some
other build tools which implement a hierarchical build by recursing.

Iy
=== SCONS 105

Top-Relative Path Names in Subsidiary SConscr i pt
Files

14.3. Top-Relative Path Names in Subsidiary
SConscri pt Files

If you need to use afile from another directory, it's sometimes more convenient to specify the path to afile in another
directory from the top-level SConst r uct directory, even when you're using that file in asubsidiary SConscr i pt

filein asubdirectory. Y ou can tell SConsto interpret a path name asrelative to thetop-level SConst r uct directory,
not the local directory of the SConscr i pt file, by prepending a# (hash mark) in front of the path name:

env = Environnent ()
env. Progran('prog', ['main.c', '#lib/fool.c', 'foo2.c'])

In this example, the | i b directory is directly underneath the top-level SConstruct directory. If the above
SConscri pt fileisin asubdirectory named sr ¢/ pr og, the output would look like:

% scons -Q

cc -0 lib/fool.o -c lib/fool.c

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

CC -0 src/prog/main.o -c src/prog/ nmain.c

cc -0 src/prog/prog src/prog/main.o lib/fool.o src/prog/foo2.o0

(Noticethat thel i b/ f 001. o object fileisbuilt in the same directory asits source file. See Chapter 15, Separating
Source and Build Trees: Variant Directories, below, for information about how to build the object file in a different
subdirectory.)

A couple of notes on top-relative paths:

1. SCons doesn't care whether you add a slash after the #. Some people consider ' #/ 1 i b/ f 001. ¢' morereadable
than' #1 i b/ f ool. c¢', but they're functionally equivalent.

2. The top-relative syntax is only evaluated by SCons, the Python language itself does not understand about it. This
becomes immediately obvious if you like to use pri nt for debugging, or write a Python function that wants to
evaluate apath. Y ou can force SConsto evaluate atop-rel ative path and produce a string that can be used by Python
code by creating a Node object from it;

path = "#/incl ude"

print("path =", path)
print("force-interpreted path =", Entry(path))
Which shows:

% scons -Q

path = #/incl ude
force-interpreted path = include
scons: ~.' is up to date.

14.4. Absolute Path Names

Of course, you can always specify an absolute path name for afile--for example:

Iy
=== SCONS 106

Sharing Environments (and Other Variables) Between
SConscri pt Files

env = Environment ()
env. Program(' prog', ['main.c', '/usr/joe/lib/fool.c', 'foo2.c'])

Which, when executed, would yield:

% scons -Q

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

cC -0 src/prog/main.o -c src/prog/ main.c

cc -0 /usr/joe/lib/fool.o -c /usr/joel/lib/fool.c

cc -0 src/prog/prog src/prog/main.o /usr/joel/lib/fool.o src/prog/foo2.0

(As was the case with top-relative path names, notice that the/ usr/j oe/ | i b/ f ool. o object fileis built in the
same directory asits source file. See Chapter 15, Separating Source and Build Trees: Variant Directories, below, for
information about how to build the object file in a different subdirectory.)

14.5. Sharing Environments (and Other
Variables) Between SConscri pt Files

Inthepreviousexample, each of thesubsidiary SConscr i pt filescreateditsown construction environment by calling
Envi ronnment separately. This obviously works fine, but if each program must be built with the same construction
variables, it's cumbersome and error-prone to initialize separate construction environments in the same way over and
over in each subsidiary SConscri pt file.

SCons supports the ability to export variables from an SConscri pt file so they can be imported by other
SConscri pt files, thus alowing you to share common initialized values throughout your build hierarchy.

14.5.1. Exporting Variables

There are two ways to export a variable from an SConscr i pt file. The first way isto call the Export function.
Export is pretty flexible - in the simplest form, you pass it a string that represents the name of the variable, and
Export storesthat withitsvaue:

env = Environnent ()
Export (' env')

Y ou may export more than one variable name at atime:

env = Environnent ()
debug = ARGUMENTS| ' debug']
Export (' env', 'debug')

Because a Python identifier cannot contain spaces, Export assumes a string containing spaces is is a shortcut for
multiple variable names to export and splitsit up for you:

env = Environment ()
debug = ARGUVMENTS| ' debug’]

Iy
=== SCONS 107

Importing Variables

Export (' env debug')

You can also pass Export adictionary of values. This form alows the opportunity to export a variable from the
current scope under a different name - in this example, the value of f 00 is exported under the name " bar " :

env Envi r onnment ()

foo " FOO'

args = {"env": env, "bar": foo}
Export (args)

Export will also accept argumentsin keyword style. Thisform adds the ability to create exported variables that have
not actually been set locally in the SConscript file. When used this way, the key is the intended variable name, not a
string representation as with the other forms:

Expor t (MODE="DEBUG', TARGET="ar ni')

The styles can be mixed, though Python function calling syntax requires al non-keyword arguments to precede any
keyword argumentsin the call.

The Export function adds the variables to a global location from which other SConscr i pt files canimport. Calls
to Export are cumulative. When you call Export you are actually updating a Python dictionary, so it is fine to
export avariable you have already exported, but when doing so, the previous valueislost.

The other way to export isyou can specify alist of variables as a second argument to the SConscr i pt function cal:
SConscri pt (' src/ SConscript', 'env')
Or (preferably, for readability) using the expor t s keyword argument:

SConscri pt (' src/ SConscript', exports='env')

These calls export the specified variables to only the listed SConscri pt file(s). You may specify more than one
SConscri pt fileinalist:

SConscri pt (['srcl/ SConscript', 'src2/SConscript'], exports='env')

Thisisfunctionally equivalent to callingthe SConscr i pt function multipletimeswiththesameexpor t s argument,
one per SConscri pt file.

14.5.2. Importing Variables

Once a variable has been exported from a calling SConscr i pt file, it may be used in other SConscr i pt filesby
calingthel nport function:

Iy
=== SCONS 108

Returning Values From an SConscr i pt File

| mport (' env')
env. Program(' prog', ['prog.c'])

Thel nport call makesthe previoudy defined env variable available to the SConscri pt file. Assumingenv isa
construction environment, after import it can be used to build programs, libraries, etc. The use case of passing around
a construction environment is extremely common in larger scons builds.

Likethe Export function, thel mport function can be called with multiple variable names:

| mport (' env', 'debug')
env = env. Cl one(DEBUG=debug)
env. Progran(' prog', ['prog.c'])

In this example, we pull in the common construction environment env, and use the value of the debug variable to
make amodified copy by passing that to aCl one call.

Thel mport function will (like Expor t) split a string containing white-space into separate variable names:

| mport (' env debug')
env = env. Cl one(DEBUG=debug)
env. Progran(' prog', ['prog.c'])

| mport prefersalocal definitionto aglobal one, sothat if thereisaglobal export of f 00, and the calling SConscript
has exported f 00 to this SConscript, the import will find the f oo exported to this SConscript.

Lastly, as aspecial case, you may import all of the variables that have been exported by supplying an asterisk to the
| mport function:;

| mport (' *")
env = env. C one(DEBUG=debug)

env. Progran(' prog', ['prog.c'])

If you're dealing with alot of SConscri pt files, this can be alot simpler than keeping arbitrary lists of imported
variables up to date in each file.

14.5.3. Returning Values From an SConscri pt File

Sometimes, you would like to be able to use information from a subsidiary SConscr i pt file in some way. For
exampl e, suppose that you want to create one library from object files built by several subsidiary SConscr i pt files.
Y ou can do this by using the Ret ur n function to return values from the subsidiary SConscr i pt filesto the calling
file. Like I mport and Export, Ret ur n takes a string representation of the variable name, not the variable name
itself.

If, for example, we have two subdirectoriesf 0o and bar that should each contribute an object fileto alibrary, what

wed like to be able to do is callect the object files from the subsidiary SConscr i pt calslikethis:

env = Environment ()
Export (' env')

Iy
=== SCONS 109

Returning Values From an SConscr i pt File

objs =[]

for subdir in ['foo', "bar']:
o0 = SConscript (" %/ SConscript' % subdir)
obj s. append(o)

env. Li brary(' prog', objs)

We can do this by using the Ret ur n functioninthef oo/ SConscri pt filelikethis:

| nport (' env')
obj = env. vject('foo.c')
Return(' obj ")

(The corresponding bar / SConscr i pt file should be pretty obvious.) Then, when we run SCons, the object files
from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q

cc -0 bar/bar.o -c bar/bar.c

cc -o foo/foo.0 -c foo/foo.c

ar rc libprog.a foo/foo.o0 bar/bar.o
ranlib |ibprog.a

Iy
=== SCONS 110

15 Separating Source and
Build Trees: Variant Directories

It is often useful to keep built files completely separate from the source files. Two main benefits are the ability to have
different configurations simultaneously without build conflicts, and being version-control friendly.

Consider if you have a project to build an embedded software system for a variety of different controller hardware.
The system is able to share alot of code, so it makes sense to use a common source tree, but certain build options
in the source code and header files differ. For a regular in-place build, the build outputs go in the same place as the
source code. If you build Controller A first, followed by Controller B, on the Controller B build everything that uses
different build options has to be rebuilt since those objects will be different (the build lines, including preprocessor
defines, are part of SCons's out-of-date calculation for this reason). If you go back and build for Controller A again,
things have to be rebuilt again for the same reason. However, if you can separate the locations of the output files, so
each controller has its own location for build outputs, this problem can be avoided.

Having a separated build tree also helps you keep your source tree clean - there isless chance of accidentally checking
in build products to version control that were not intended to be checked in. You can add a separated build directory
to your version control system's list of items not to track. Y ou can even remove the whole build tree with a single
command without risking removing any of the source code.

The key to making this separation work is the ability to do out-of-tree builds: building under a separate root than the
sources being built. You set up out-of-tree builds by establishing what SCons calls a variant directory, a place where
you can build a single variant of your software (of course you can define more than one of these if you need to).
Since SCons tracks targets by their path, it is able to distinguish build products like bui | d/ A/ net wor k. obj of
the Controller A build from bui | d/ B/ net wor k. obj of the Controller B build, thus avoiding conflicts.

SCons providestwo waysto establish variant directories, onethrough the SConscr i pt functionthat we have already
seen, and the second through a more flexible Var i ant Di r function.

The variant directory mechanism does support doing multiple builds in one invocation of SCons, but the remainder
of this chapter will focus on setting up asingle build. Y ou can combine these techniques with ones from the previous
chapter and elsewhere in this Guide to set up more complex scenarios.

Note

TheVari ant Di r function used to be called Bui | dDi r, aname which was changed because it turned out
to be confusing: the SCons functionality differs from a familiar model of a "build directory" implemented
by certain other build systems like GNU Autotools. You might still find references to the old name on the
Internet in postings about SCons, but it no longer works.

Specifying aVariant Directory Tree as Part of an
SConscri pt Cal

15.1. Specifying a Variant Directory Tree as
Part of an SConscri pt Call

The most straightforward way to establish a variant directory tree relies on the fact that the usual way to set up a
build hierarchy isto have an SConscri pt filein the source directory. If you passavari ant _di r argument to
the SConscri pt function cal:

SConscri pt (' src/ SConscript', variant _dir="build")

SCons will then build all of the filesin the bui | d directory:

%ls src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

%ls src
SConscript hello.c
%I|s build

SConscript hello hello.c hello.o

No files were built in sr c: the object file bui | d/ hel | 0. 0 and the executable file bui | d/ hel | o were built in
thebui | d directory, as expected. But notice that even though our hel | 0. c fileactually livesin the sr ¢ directory,
SCons has compiled abui | d/ hel | o. c fileto create the object file, and that fileisnow seenin bui | d.

Y ou can ask SCons to show the dependency tree to illustrate a bit more:

% scons -Q --tree=prune
cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/hello.o
+-.
SConst r uct
bui | d
+- bui | d/ SConscri pt
+-buil d/hello
| +-build/hello.o
| +-buil d/ hello.c
+-buil d/ hello.c
+- [bui I d/ hel | 0. 0]
+-src
+- src/ SConscri pt
+-src/hello.c

+
+
I
I
I
I
I
I

What's happened is that SCons has duplicated thehel | o. ¢ filefromthesr ¢ directory to the bui | d directory, and
built the program from there (it also duplicated SConscr i pt). The next section explains why SCons does this.

The nice thing about the SConscr i pt approachisitisamost invisible to you: this build looks just like an ordinary
in-place build except for the extravar i ant _di r argument in the SConscr i pt call. SCons handles al the path
adjustments for the out-of-tree bui | d directory while it processes that SConscript file.

Iy
=== SCONS 112

Why SCons Duplicates Source Filesin aVariant
Directory Tree

15.2. Why SCons Duplicates Source Files in a
Variant Directory Tree

When you set up a variant directory, SCons conceptually behaves as if you requested a build in that directory. As
noted in the previous chapter, al builds actually happen from the top level directory, but as an aid to understanding
how SCons operates, think of it as build in place in the variant directory, not build in source but send build artifacts
to the variant directory. It turns out in place builds are easier to get right than out-of-tree builds - so by default SCons
simulatesanin place build by making the variant directory ook just like the source directory. The most straightforward
way to do that is by making copies of the files needed for the build.

The most direct reason to duplicate source filesin variant directoriesis simply that some tools (mostly older versions)
are written to only build their output files in the same directory as the source files - such tools often don't have any
option to specify the output file, and the tool just uses a predefined output file name, or uses a derived variant of the
source file name, dropping the result in the same directory. In this case, the choices are either to build the output file
in the source directory and move it to the variant directory, or to duplicate the source filesin the variant directory.

Additionally, relative references between files can cause problems which are resolved by just duplicating the hierarchy
of sourcefilesinto the variant directory. Y ou can seethisat work in use of the C preprocessor #i ncl ude mechanism
with double quotes, not angle brackets:

#i ncl ude "file.h"

The de facto standard behavior for most C compilersin this caseisto first look in the same directory asthe sourcefile
that containsthe #i ncl ude line, then to look in the directories in the preprocessor search path. Add to this that the
SConsimplementation of support for code repositories (described below) meansnot all of thefileswill befound inthe
samedirectory hierarchy, and the simplest way to make surethat theright includefileisfound isto duplicate the source
filesinto the variant directory, which provides a correct build regardless of the original location(s) of the sourcefiles.

Although source-file duplication guarantees a correct build even in these edge cases, it can usually be safely disabled.
The next section describes how you can disable the duplication of source filesin the variant directory.

15.3. Telling SCons to Not Duplicate Source
Files in the Variant Directory Tree

In most cases and with most tool sets, SCons can use sources directly from the source directory without duplicating
them into the variant directory before building, and everything will work just fine. Y ou can disable the default SCons
duplication behavior by specifying dupl i cat e=Fal se when you call the SConscri pt function:

SConscri pt (' src/ SConscript', variant _dir="build', duplicate=False)

When this flag is specified, the results of abuild look more like the mental model people may have from other build
systems - that is, the output files end up in the variant directory while the source files do not.

%Ils src
SConscr i pt
hel |l o.c

Iy
=== SCONS 113

TheVari ant Di r Function

% scons -Q
cc -c src/hello.c -o build/hello.o
cc -0 build/hello build/hello.o

%I|s build
hel | o
hell 0.0

If disabling duplication causes any problems, just return to the more cautious approach by letting SCons go back to
duplicating files.

15.4. The Vari ant Di r Function

You can also use the Var i ant Di r function to establish that target files should be built in a separate directory tree
from the sourcefiles:

VariantDir('build , "src')
env = Environment ()
env. Progran(' build/ hello.c")

When using thisform, you have to tell SCons that sources and targets arein the variant directory, and those references
will trigger the remapping, necessary file copying, etc. for an already established variant directory. Here is the same
example in amore spelled out form to show this more clearly:

VariantDir('build , "src')
env = Environnent ()
env. Program(target =" buil d/ hell o', source=["'build/hello.c'])

When using the Var i ant Di r function directly, SCons still duplicates the source files in the variant directory by
default:

%Ils src

hell o.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

%Ils build

hello hello.c hello.o

Y ou can specify the same dupl i cat e=Fal se argument that you can specify for an SConscri pt cal:

VariantDir('build, "'"src', duplicate=Fal se)
env = Environnent ()
env. Progran(' buil d/ hello.c")

In which case SCons will disable duplication of the sourcefiles:

%Ils src
hel |l o.c
&

'—‘-‘ SCONS 114

Using Var i ant Di r Withan SConscri pt File

% scons -Q

cc -0 build/hello.o -c src/hello.c
cc -0 build/hello build/ hello.o
%Ils build

hello hello.o

15.5. Using Var i ant Di r With an SConscr i pt
File

Evenwhen using the Var i ant Di r function, itismore natural to useit with asubsidiary SConscr i pt file, because
then you don't have to adjust your individual build instructions to use the variant directory path. For example, if the
src/ SConscri pt lookslikethis:

env = Environnent ()
env. Progran(' hello.c')

Then our SConst r uct file could look like:

VariantDir('build, "src')
SConscri pt (' bui | d/ SConscript')

Yielding the following output:

%Ils src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o
%Ils build

SConscript hello hello.c hello.o

This is completely equivaent to the use of SConscri pt with the vari ant _di r argument from earlier in this
chapter, but did require calling the SConscript using the aready established variant directory path to trigger that
behavior. If you call SConscri pt (' src/ SConscri pt') youwould get anormal in-place buildinsrc.

15.6. Using A ob with VariantDi r

The @ ob file name pattern matching function works just as usual when using Var i ant Di r . For example, if the
src/ SConscri pt lookslikethis:

env = Environment ()
env. Program(' hello', @ob('*.c"))

Then with the same SConst r uct file asin the previous section, and source filesf 1. ¢ and f 2. ¢ in src, wewould
see the following output:

%Ils src

Iy
=== SCONS 115

Variant Build Examples

SConscript fl.c f2.c¢ f2.h

% scons -Q

cc -0 build/fl.o0 -c build/fl.c

cc -0 build/f2.0 -c build/f2.c

cCc -0 build/hello build/fl.0 build/f2.0

% I|s build

SConscript fl.c fl.o f2.¢c f2.h f2.0 hello

The G ob function returns Nodesinthe bui | d/ tree, asyou'd expect.

15.7. Variant Build Examples

Thevari ant _di r keyword argument of the SConscr i pt function provides everything we need to show how easy
it isto create variant builds using SCons. Suppose, for example, that we want to build a program for both Windows
and Linux platforms, but that we want to build it in directory on a network share with separate side-by-side build
directories for the Windows and Linux versions of the program. We have to do alittle bit of work to construct paths,
to make sure unwanted location dependencies don't creep in. The top-relative path reference can be useful here. To
avoid writing conditional code based on platform, we can build thevar i ant _di r path dynamically:

pl atform = ARGUVENTS. get (' OS', Platform))

i ncl ude = "#export/$PLATFORM i ncl ude"
[ib = "#export/$PLATFORM | i b"
bin = "#export/$PLATFORM bi n"

env = Environment (
PLATFORMEpI at f or m

Bl NDI R=bi n,
I NCDI R=i ncl ude,
LI BDI R=l i b,

CPPPATH=[i ncl ude] ,
LI BPATH=[| i b],
LI BS=' worl d',

)
Export (' env')

env. SConscri pt (' src/ SConscript', variant _dir="buil d/ $PLATFORM)

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=l i nux

Install file: "build/linux/world/ world.h" as "export/I|inux/include/world.h"

cc -0 build/linux/hello/hello.o -c -lexport/Ilinux/include build/linux/hello/hello.c
cc -0 build/linux/world/world.o -c -lexport/Ilinux/include build/linux/world/ world.c
ar rc build/linux/world/libworld.a build/linux/world/ world.o

ranlib build/linux/world/libworld.a

Install file: "build/linux/world/libworld. a" as "export/linux/lib/libworld.a"

cc -0 build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hellol/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

Iy
=== SCONS 116

Variant Build Examples

C.\>scons -Q OS=wi ndows

Install file: "build/ wi ndows/world/world.h" as "export/w ndows/i ncl ude/worl d. h"

cl /Fobuil d\wi ndows\ hel | o\ hel | 0. obj /c buil d\w ndows\ hel | o\ hel | 0. ¢ /nol ogo /1 export\w ndow
cl /Fobuil d\wi ndows\ wor | d\wor | d. obj /c buil d\w ndows\wor| d\worl d.c /nol ogo /1 export\w ndow
lib /nol ogo /QUT: bui | d\wi ndows\wor | d\worl d.lib buil d\w ndows\wor| d\wor| d. obj

Install file: "build/ wi ndows/world/world.lib" as "export/w ndows/l|ib/world.lib"

i nk /nol ogo /QUT: bui | d\wi ndows\ hel | o\ hel | 0. exe /LI BPATH: export\w ndows\lib world.lib buil
enbedMani f est ExeCheck(target, source, env)

Install file: "build/ wi ndows/ hell o/ hello.exe" as "export/w ndows/ bi n/ hell o. exe"

In order to build severa variants at once when using the var i ant _di r argument to SConscr i pt, you can call
the function repeatedly - this example does so in aloop. Note that the SConscr i pt trick of passing alist of script
files, or alist of source directories, does not work with vari ant _di r, SCons allows only a single SConscr i pt
tobegivenif vari ant _di r isused.

env = Environnment (OS=ARGUVMENTS. get (' OS'))
for os in ['newell', 'post']:
SConscri pt (' src/ SConscript', variant _dir="build/' + o0s)

Iy
=== SCONS 117

16 Building From Code
Repositories

Often, a software project will have one or more central repositories, directory treesthat contain source code, or derived
files, or both. Y ou can eliminate additional unnecessary rebuilds of files by having SCons use files from one or more
code repositories to build filesin your local build tree.

16.1. The Reposi t ory Method

It's often useful to allow multiple programmers working on aproject to build software from source files and/or derived
filesthat are stored in a centrally-accessible repository, a directory copy of the source code tree. (Note that thisis not
the sort of repository maintained by a source code management system like BitKeeper, CVS, or Subversion.) Y ou use
the Reposi t or y method to tell SCons to search one or more central code repositories (in order) for any sourcefiles
and derived files that are not present in the local build tree:

env = Environnent ()
env. Progran(' hello.c')
Repository('/usr/repositoryl', '/usr/repository2')

Multiple callsto the Reposi t or y method will simply add repositories to the global list that SCons maintains, with
the exception that SConswill automatically filter out the current directory and any non-existent directoriesfromthelist.

16.2. Finding source files in repositories

The above example specifies that SCons will first search for files under the / usr/ reposi t or y1 tree and next
under the/ usr/ r eposi t or y2 tree. SCons expects that any filesit searches for will be found in the same position
relativeto thetop-level directory. Inthe above example, if thehel | 0. ¢ fileisnot foundinthelocal build tree, SCons
will search first for a/ usr/ reposi toryl/ hel | o. c fileand thenfor a/ usr/ r eposi t ory2/ hel | o. c file
touseinitsplace.

So given the SConst r uct fileabove, if thehel | 0. ¢ fileexistsin thelocal build directory, SCons will rebuild the
hel | o program as normal:

% scons -Q
cc -0 hello.o -c hello.c
cc -o hello hello.o

Finding #i ncl ude filesin repositories

If, however, there is no local hel | 0. ¢ file, but one exists in / usr/ reposi t or yl, SCons will recompile the
hel | o program from the sourcefileit finds in the repository:

% scons -Q
cc -0 hello.o -c /usr/repositoryl/ hello.c
cc -0 hello hello.o

And similarly, if thereisnolocal hel | o. c fileandno/ usr/reposi toryl/ hel | o. c, but oneexistsin/ usr/
repository2:

% scons -Q
cc -0 hello.o -c /usr/repository2/hello.c
cc -0 hello hello.o

The G ob function understands about repositories, and will use the same matching algorithm as described for
explicitly-listed sources.

16.3. Finding #i ncl ude files in repositories

Y ou've aready seen that SConswill scan the contents of asourcefilefor #i ncl ude filenamesand realize that targets
built from that source file also depend on the #i ncl ude file(s). For each directory in the $CPPPATH list, SCons
will actually search the corresponding directoriesin any repository trees and establish the correct dependencies on any
#i ncl ude filesthat it findsin repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable to find the
#i ncl ude files. If, for example, the hel | 0. ¢ file in our previous example includes the hel | 0. h in its current
directory, and the hel | 0. h only existsin the repository:

% scons -Q
cc -0 hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate source file inclusion directives
(-1 or /1 flags) to the compilation commands for each directory in the $CPPPATH list. So if you add the current
directory to the construction environment $CPPPATH:

env = Environment (CPPPATH=['."])
env. Progran(' hello.c")
Repository('/usr/repositoryl')

Then re-executing SCons yields:

% scons -Q
cc -0 hello.o -c -1. -I/usr/repositoryl hello.c
cc -0 hello hello.o

The order of the - | options replicates, for the C preprocessor, the same repository-directory search path that SCons
uses for its own dependency analysis. If there are multiple repositories and multiple $CPPPATH directories, SCons
will add the repository directories to the beginning of each $CPPPATH directory, rapidly multiplying the number of
- | flags. If, for example, the $CPPPATH contains three directories (and shorter repository path names!):

Iy
=== SCONS 119

Limitationson #i ncl ude filesin repositories

env = Environment (CPPPATH=["dirl', 'dir2', 'dir3'])
env. Progranm(' hello.c")
Repository('/r1', "/r2")

Then you'll end up with nine - | options on the command line, three (for each of the $CPPPATH directories) times
three (for the local directory plus the two repositories):

% scons -Q
cc -0 hello.o -¢c -1dirl -1/r2/dirdl -1/r2/dirl -1dir2 -1/r1/dir2 -1/r2/dir2 -1dir3 -1/r1/di
cc -o hello hello.o

16.3.1. Limitations on #i ncl ude files in repositories

SCons relies on the C compiler's - | optionsto control the order in which the preprocessor will search the repository
directories for #i ncl ude files. This causes a problem, however, with how the C preprocessor handles #i ncl ude
lines with the file name included in double-quotes.

Asyou've seen, SConswill compilethe hel | 0. c file from the repository if it doesn't exist in the local directory. If,
however, the hel | 0. c filein the repository containsa#i ncl ude line with the file name in double quotes:

#i ncl ude "hell o. h"

i nt
mai n(i nt argc, char *argv[])
{
printf (HELLO MESSAGE) ;
return (0);
}

Thenthe C preprocessor will alwaysuseahel | 0. h filefromtherepository directory first, evenif thereisahel | 0. h
filein thelocal directory, despite the fact that the command line specifies- | asthefirst option:

% scons -Q
cc -0 hello.o -c -1. -l/usr/repositoryl /usr/repositoryl/hello.c
cc -0 hello hello.o

This behavior of the C preprocessor--aways search for a#i ncl ude filein double-quotes first in the same directory
as the source file, and only then search the - | --can not, in general, be changed. In other words, it's a limitation that
must be lived with if you want to use code repositoriesin thisway. There are three ways you can possibly work around
this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so, add that option
to $CFLAGS (or $CXXFLAGS, or both) in your construction environments. Make sure the option is used for all
construction environment that use C preprocessing!

2. Change all occurrences of #i ncl ude "file.h" to#i nclude <fil e. h>. Useof #i ncl ude with angle
brackets does not have the same behavior--the - | directories are searched first for #i ncl ude files--which gives
SCons direct control over thelist of directories the C preprocessor will search.

3. Requirethat everyone working with compilation from repositories check out and work on entire directories of files,
not individual files. (If you uselocal wrapper scriptsaround your source code control system’'s command, you could
add logic to enforce this restriction there.

Iy
=== SCONS 120

Finding the SConst r uct fileinrepositories

16.4. Finding the SConst r uct file in
repositories

SCons will aso search in repositories for the SConst r uct file and any specified SConscr i pt files. This poses
a problem, though: how can SCons search a repository tree for an SConst r uct fileif the SConst r uct fileitself
contains the information about the pathname of the repository? To solve this problem, SCons allows you to specify
repository directories on the command line using the - Y option:

% scons -Q -Y /usr/repositoryl -Y /usr/repository2

When looking for source or derived files, SCons will first search the repositories specified on the command line, and
then search the repositories specified in the SConst r uct or SConscr i pt files.

Note that while other files are searched through the chain of repositories, SConst r uct isspecid - it must be found
either in the current directory or the first directory specified using the - Y (or the - -repository or--srcdir
synonyms) command line option, or the build will abort.

16.5. Finding derived files in repositories

If arepository contains not only source files, but also derived files (such as object files, libraries, or executables),
SConswill performitsnormal signature calculation to decideif aderived filein arepository isup-to-date, or if it needs
to be rebuilt in the local build directory. For the SCons signature calculation to work correctly, arepository tree must
contain the . sconsi gn filesthat SCons usesto keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of its derived
filesand . sconsi gn files, or who would run SCons in a separate build directory and copy the resulting tree to the
desired repository:

% cd /usr/repositoryl

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

cc -o hello.o -c hello.c

cc -0 hello hello.o filel.o file2.0

(Notethat thisis safe even if the SConst r uct filelists/ usr/ reposi t oryl asarepository, because SCons will
remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, you only need to create the one local sourcefile you'reinterested in working with
at the moment, and use the - Y option to tell SCons to fetch any other filesit needs from the repository:

% cd $HOVE/ bui | d

%edit hello.c

% scons -Q -Y /usr/repositoryl

cc -c -0 hello.o hello.c

cc -0 hello hello.o /usr/repositoryl/filel.o /usr/repositoryl/file2.o

Noticethat SConsrealizesthat it does not need to rebuild local copiesfi | el. oandfi | e2. o files, but instead uses
the already-compiled files from the repository.

Iy
=== SCONS 121

Guaranteeing local copies of files

16.6. Guaranteeing local copies of files

If the repository tree contains the complete results of abuild, and you try to build from the repository without any files
inour local tree, something moderately surprising happens:

% nkdi r $HOVE/ bui | d2

% cd $HOVE/ bui | d2

% scons -Q -Y /usr/all/repository hello
scons: " hello' is up-to-date.

Why does SCons say that the hel | o program is up-to-date when there is no hel | o program in the local build
directory? Because the repository contains the hel | o program, and SCons correctly determines that nothing needs
to be done to rebuild that up-to-date copy of thefile.

There are, however, times when you want to ensure that alocal copy of afile always exists. For example, if you are
packaging the result of the build, all the files used in the package need to be present locally, and the packaging tool
is unlikely to know anything about SCons repositories. Similarly, if you build a unit test program, and then expect
to run after the build, it doesn't help if the test program is somewhere else and wasn't rebuilt into the local directory.
In these cases, you can tell SCons to make a copy of any up-to-date repository file in the local build directory, use
theLocal function:

env = Environnent ()
hell o = env. Progran(' hello.c")
Local (hel | o)

Now, if you run the same command, SCons will make alocal copy of the program from the repository copy, and tell
you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from/usr/all/repository/hello
scons: " hello' is up-to-date.

(Noticethat, because the act of making thelocal copy isnot considered a"build" of thehel | o file, SConsstill reports
that it is up-to-date.)

16.7. Using Repository to separate source and
build.

If youwant to just do a build where the build artifacts don't pollute the source directory, the repository mechanism can
help with that. Here's an example: checkout or unpack your project in the directory sr ¢, and then build it in bui | d:

$ nkdir build

$ cd build
$ scons -Q-Y ../src
gcc -o foo.o -I. -1/path/to/src -c /path/to/src/foo.c

gcc -o foo foo.o

Iy
=== SCONS 122

Using Repository to separate source and build.

$1s
foo foo0.0

It can become awkward to keep having to type - Y pat h-t o-r epo repeatedly. If so, the option can be placed in
SCONSFLAGS.

Iy
=== SCONS 123

17 Extending SCons: Writing
Your Own Builders

Although SCons provides many useful methods for building common software products (programs, libraries,
documents, etc.), you frequently want to be able to build some other type of file not supported directly by SCons.
Fortunately, SCons makes it very easy to define your own Builder objects for any custom file types you want to build.
(In fact, the SCons interfaces for creating Builder objects are flexible enough and easy enough to use that all of the
SCons built-in Builder objects are created using the mechanisms described in this section.)

17.1. Writing Builders That Execute External
Commands

Thesimplest Builder to createisonethat executes an external command. For example, if wewant to build an output file
by running the contents of theinput file through acommand named f oobui | d, creating that Builder might look like:

bl d = Buil der(action='foobuild < $SOURCE > $TARCET')

All the above line does is create a free-standing Builder object. The next section will show how to actually useit.

17.2. Attaching a Builder to a Construction
Environment

A Builder object isn't useful until it's attached to a construction environment so that we can call it to arrangefor filesto
be built. Thisis done through the $BUI LDERS construction variable in an environment. The $BUI LDERS variableis
a Python dictionary that maps the names by which you want to call various Builder objects to the objects themselves.
For example, if wewant to call the Builder we just defined by the name Foo, our SConst r uct file might look like:

bl d
env

Bui | der (acti on=' foobuild < $SOURCE > $TARGET")
Envi ronnent (BU LDERS={"' Foo' : bl d})

With the Builder attached to our construction environment with the name Foo, we can now actually call it like so:

Attaching a Builder to a Construction Environment

env. Foo('file.foo', "file.input')

Then, when we run SConsiit looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that thedefault $BUI L DERS variablein aconstruction environment comeswith adefault set of Builder
objects aready defined: Pr ogr am Li br ary, etc. And when we explicitly set the $BUI LDERS variable when we
create the construction environment, the default Builders are no longer part of the environment:

bl d Bui | der (acti on='foobuild < $SOURCE > $TARGET')
env Envi ronnent (BU LDERS={"' Foo' : bl d})

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

% scons -Q

AttributeError: Builder or other environment nethod 'Programi not found.
Check spelling, check external programexists in env['ENV]J['PATH],

and check that a suitable tool is being | oaded:

File "/home/ ny/ project/SConstruct”, line 7:
env. Progran(' hello.c")
Fil e "SCons/ Environnment.py", |ine 1309:

rai se Attri buteError (

To be able to use both our own defined Builder objects and the default Builder objects in the same construction
environment, you can either add to the $BUI LDERS variable using the Append function:

env Envi ronnent ()

bl d = Buil der(action='foobuild < $SOURCE > $TARGET')
env. Append(BUl LDERS={"' Foo' : bl d})

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

Or you can explicitly set the appropriately-named key in the $BUl LDERS dictionary:

env Envi r onnent ()

bl d = Buil der(action='foobuild < $SOURCE > $TARCGET')
env[' BU LDERS][' Foo'] = bld

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

Either way, the same construction environment can then use both the newly-defined Foo Builder and the default
Pr ogr amBuilder:

% scons -Q
foobuild < file.input > file.foo
cc -0 hello.o -c hello.c

Iy
=== SCONS 125

Letting SCons Handle The File Suffixes

cc -o hello hello.o

17.3. Letting SCons Handle The File Suffixes

By supplying additional information when you create a Builder, you can let SCons add appropriate file suffixes to the
target and/or the source file. For example, rather than having to specify explicitly that you want the Foo Builder to
buildthefi | e. f oo target filefromthefi | e. i nput sourcefile, you can givethe. f oo and . i nput suffixesto
the Builder, making for more compact and readable calls to the Foo Builder:

bl d = Buil der (
action='foobuild < $SOURCE > $TARGET",
suffix=".foo',
src_suffix=".input',
)
env = Environnment (BU LDERS={' Foo' : bl d})
env. Foo('filel")
env. Foo('file2")

% scons -Q
foobuild < filel.input > filel.foo
foobuild < file2.input > file2.foo

You can aso supply apr ef i x keyword argument if it's appropriate to have SCons append a prefix to the beginning
of target file names.

17.4. Builders That Execute Python Functions

In SCons, you don't have to call an external command to build afile. Y ou can, instead, define a Python function that
aBuilder object can invoke to build your target file (or files). Such a builder function definition looks like:

def build function(target, source, env):
Code to build "target" from "source"
return None

The arguments of a builder function are:

t ar get
A list of Node objectsrepresenting thetarget or targetsto be built by thisfunction. The file names of thesetarget(s)
may be extracted using the Python st r function.

source
A list of Node objects representing the sources to be used by this function to build the targets. The file names of
these source(s) may be extracted using the Python st r function.

env
The construction environment used for building the target(s). The function may use any of the environment's
construction variables in any way to affect how it builds the targets.

Thefunction will be constructed as a SCons FunctionAction and must return a0 or None valueif thetarget(s) are built
successfully. Thefunction may raise an exception or return any non-zero valueto indicatethat the build isunsuccessful.
For more information on Actions see the Action Objects section of the man page.

Iy
=== SCONS 126

Builders That Create Actions Using a Generator

Once you've defined the Python function that will build your target file, defining a Builder object for itisassimpleas
specifying the name of the function, instead of an external command, as the Builder'sact i on argument:

def build function(target, source, env):
Code to build "target" from "source"
return None

bl d = Buil der (
action=buil d _functi on,
suffix=".foo',
src_suffix=".input',
)
env = Environnent (BU LDERS={' Foo' : bl d})
env. Foo('file")

And notice that the output changes dlightly, reflecting the fact that a Python function, not an external command, is
now called to build the target file:

% scons -Q
build function(["file.foo"], ["file.input"])

17.5. Builders That Create Actions Using a
Generator

SCons Builder objects can create an action "on the fly" by using a function called a Generator. (Note: this is not
the same thing as a Python generator function described in PEP 255 [https://www.python.org/dev/peps/pep-0255/])
This provides a great deal of flexibility to construct just the right list of commands to build your target. A generator
looks like:

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (target[0], source[0])

The arguments of a generator are:

source
A list of Node objects representing the sources to be built by the command or other action generated by this
function. The file names of these source(s) may be extracted using the Python st r function.

tar get
A list of Node objects representing the target or targets to be built by the command or other action generated by
this function. The file names of these target(s) may be extracted using the Python st r function.

env
The construction environment used for building the target(s). The generator may use any of the environment's
construction variables in any way to determine what command or other action to return.

for_signature
A flag that specifies whether the generator is being called to contribute to abuild signature, as opposed to actually
executing the command.

Iy
=== SCONS 127

https://www.python.org/dev/peps/pep-0255/
https://www.python.org/dev/peps/pep-0255/

Builders That Modify the Target or Source Lists Using an
Emitter

The generator must return a command string or other action that will be used to build the specified target(s) from the
specified source(s).

Once you've defined a generator, you create a Builder to use it by specifying the gener at or keyword argument
instead of act i on.

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (source[0], target[O0])

bl d = Buil der (
gener at or =gener at e_act i ons,
suffix='.foo',
src_suffix=".input',
)
env = Environnment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

% scons -Q
foobuild < file.input > file.foo

Note that it'sillegal to specify bothanact i on and agener at or for aBuilder.

17.6. Builders That Modify the Target or Source
Lists Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s). Y ou do this by
defining an emitter function that takes asits argumentsthe list of the targets passed to the builder, thelist of the sources
passed to the builder, and the construction environment. The emitter function should return the modified lists of targets
that should be built and sources from which the targets will be built.

For example, suppose you want to defineaBuilder that alwayscallsafoobuild program, and you want to automatically
add a new target file named new t ar get and a new source file named new_sour ce whenever it's caled. The
SConst r uct file might ook like this:

def nodify targets(target, source, env):
t arget . append(' new target')
sour ce. append(' new_sour ce')
return target, source

bl d = Buil der (
action='foobuild $TARGETS - $SOURCES',
suffix='.foo',
src_suffix=".input',
em tter=nodi fy targets,
)
env = Environnment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

And would yield the following output:

Iy
=== SCONS 128

Modifying a Builder by adding an Emitter

% scons -Q
foobuild file.foo new target - file.input new source

One very flexible thing that you can do is use a construction variabl e to specify different emitter functionsfor different
construction environments. To do this, specify a string containing a construction variable expansion as the emitter
when you call the Bui | der function, and set that construction variable to the desired emitter function in different
construction environments:

bl d = Buil der(
action='./ny_conmand $SOURCES > $TARGET',
suffix=".foo',
src_suffix=".input',
emtter="$MWY_EM TTER ,

def nodifyl(target, source, env):
return target, source + ['nodifyl.in']

def nodify2(target, source, env):
return target, source + ['nodify2.in"]

envl = Environnment (BU LDERS={' Foo': bld}, My _EM TTER=nodi fyl)
env2 = Environnment (BU LDERS={' Foo': bld}, My_EM TTER=nodi f y2)
envl. Foo('filel")
env2. Foo('file2")

In thisexample, thernrodi f y1. i nand nodi f y2. i n files get added to the source lists of the different commands:

% scons -Q
./my_command filel.input nodifyl.in > filel.foo
./my_command file2.input nodify2.in > file2.foo

17.7. Modifying a Builder by adding an Emitter

Defining an emitter to work with a custom Builder is a powerful concept, but sometimes al you really want is to be
able to use an existing builder but change its concept of what targets are created. In this case, trying to recreate the
logic of an existing Builder to supply a specia emitter can be alot of work. Thetypical case for thisis when you want
to use a compiler flag that causes additional files to be generated. For example the GNU linker accepts an option -
Map which outputs alink map to the file specified by the option's argument. If this option isjust supplied to the build,
SConswill not consider the link map file atracked target, which has various undesirable effects.

To help with this, SCons provides construction variables which correspond to a few standard builders:
$PROGEM TTER for Pr ogram $LI BEM TTER for Li brary; $SHLI BEM TTER for Shar edLi brary and
$LDMODULEEM TTER for Loadabl eModul e;. Adding an emitter to one of these will cause it to be invoked in
addition to any existing emitter for the corresponding builder.

This example adds map creation as a linker flag, and modifies the standard Pr ogr am emitter to know that map

generation is a side-effect:

env = Environment ()
map_fil ename = "${ TARGET. nanme}. map"

Iy
=== SCONS 129

Where To Put Y our Custom Builders and Tools

def map_em tter(target, source, env):
t ar get . append(map_fi | enane)
return target, source

env. Append(LI NKFLAGS="-W, - Map={},--cref".format (map_fil enane))
env. Append(PROGEM TTER=map_eni tter)
env. Progranm(' hello.c")

If you run this example, adding an option to tell SCons to dump some information about the dependencies it knows,
it shows the map file option in use, and that SCons indeed knows about the map file, it's not just a silent side effect
of the compiler:

% scons -Q --tree=prune
cc -o hello.o -c hello.c
cc -0 hello -W, - Map=hel | 0. map, --cref hello.o
+- .
+- SConst r uct
+-hell o

17.8. Where To Put Your Custom Builders and
Tools

Thesi t e_scons directories give you a place to put Python modules and packages that you can import into your
SConscri pt files (at the top level), add-on tools that can integrate into SCons (inasi t e_t ool s subdirectory),
andasite_scons/site_init. py filethat getsread beforeany SConst ruct or SConscri pt file, alowing
you to change SCons's default behavior.

Each system type (Windows, Mac, Linux, etc.) searches a canonical set of directoriesfor si t e_scons; seethe man
pagefor details. Thetop-level SConstruct'ssi t e_scons directory (that is, the one in the project) is always searched
last, and its directory is placed first in the tool path so it overrides all others.

If you get atool from somewhere (the SConswiki or athird party, for instance) and you'd liketo useit in your project, a
si t e_scons directory isthesimplest placeto put it. Toolscomeintwo flavors; either a Python function that operates
onan Envi r onnent or a Python module or package containing two functions, exi st s() andgenerate() .

A single-function Tool canjust beincludedinyour sit e_scons/site_i ni t. py filewhereit will be parsed and
made available for use. For instance, you could haveasi t e_scons/site_i nit. py filelikethis:

def TOOL_ADD HEADER(env):
"""A Tool to add a header from $HEADER to the source file"""
add_header = Bui |l der(
action=['echo "$HEADER' > $TARCGET', 'cat $SOURCE >> $TARGET']

)
env. Append(BU LDERS={' AddHeader': add_header})

Iy
=== SCONS 130

Where To Put Y our Custom Builders and Tools

env[' HEADER | ="' # set default val ue

and aSConst r uct likethis:

Use TOOL_ADD HEADER from site _scons/site_init.py
env=Envi ronnment (t ool s=[' default', TOO.L_ADD HEADER], HEADER="=====")
env. AddHeader ("tgt', 'src')

The TOOL_ADD_ HEADER tool method will be called to add the AddHeader tool to the environment.

A more full-fledged tool with exi st s() and gener at e() methods can be installed either as amodule in the file
site_scons/site_tool s/tool name. py or as a package in the directory site_scons/site_t ool s/
t ool nane. In the case of using a package, the exi st s() and gener at e() are in the file site_scons/
site_tool s/toolname/ __init__.py.(Inaltheabovecaset ool nane isreplaced by the name of thetool.)
Sincesi te_scons/ site_tool s isautomatically added to the head of the tool search path, any tool found there
will be available to al environments. Furthermore, atool found there will override a built-in tool of the same name,
so if you need to change the behavior of abuilt-in tool, si t e_scons gives you the hook you need.

Many people have a collection of utility Python functions they'd like to include in their SConscr i pt files: just put
theminsite_scons/ny_util s. py or any valid Python module name of your choice. For instance, you can do
something likethisinsi t e_scons/ nmy_utils. py toaddbuil d_i d and MakeWor kDi r functions:

from SCons. Script inmport * # for Execute and Mdir
def build_ id():

"""Return a build ID (stub version)
return "100"

def MakeWor kDi r (wor kdir):
"""Create the specified dir i mediately
Execut e(Mkdi r (wor kdir))

And then in your SConscr i pt or any sub-SConscri pt anywherein your build, you canimport my_ut i | s and
useit:

i mport nmy_utils
print("build_id=" + my_utils.build_id())
ny_utils. MakeWor kDir (' /t np/ wor k')

Y ou can put thiscollection initsown moduleinasi t e_scons and import it asin the example, or you can include it
insite_scons/site_init.py,whichisautomatically imported (unless you disable site directories). Note that
in order to refer to objects in the SCons namespace such as Envi r onment or Mkdi r or Execut e in any file other
than aSConst ruct or SConscri pt you aways need to do

from SCons. Scri pt inport *

Thisistrue of modulesinsit e_scons suchassite_scons/site_init. py aswell.

Iy
=== SCONS 131

Where To Put Y our Custom Builders and Tools

You can use any of the user- or machine-wide site directories such as ~/ . scons/ site_scons instead of . /
site_scons,orusethe--site-dir optiontopointtoyour owndirectory.site init.pyandsite tools
will be located under that directory. To avoid using asi t e_scons directory at al, evenif it exists, use the - - no-
site-dir option.

Iy
=== SCONS 132

18 Not Writing a Builder: the
Conmmand Builder

Creating a Builder and attaching it to a construction environment allows for alot of flexibility when you want to re-
use actionsto build multiplefiles of the sametype. This can, however, be cumbersomeif you only need to execute one
specific command to build a single file (or group of files). For these situations, SCons supports a Conmand builder
that arranges for a specific action to be executed to build a specific file or files. Thislooks alot like the other builders
(like Pr ogr am Qnoj ect , etc.), but takes as an additional argument the command to be executed to build the file:

env = Environnent ()
env. Command(' foo.out', 'foo.in', "sed 's/x/y/' < $SOURCE > $TARGET")

When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q
sed 's/x/yl' < foo.in > foo.out

Thisisoften more convenient than creating aBuilder object and adding it to the $BUI LDERS variable of aconstruction
environment.

Note that the action you specify to the Comrand Builder can be any legal SCons Action, such as a Python function:

env = Environnent ()

def build(target, source, env):
Whatever it takes to build
return None

env. Command(' foo.out', 'foo.in', build)

Which executes as follows:

% scons -Q
buil d(["foo.out"], ["fo0.in"])

$SOURCE and $TARCGET are expanded in the source and target as well:

env. Command(' ${ SOURCE. base}.out', File('foo.in'), build)

Which does the same thing as the previous example, but allows you to write amore generic rule for transforming the
sourcefilenameto thetarget filename, sinceunlikeregular Builders, Conrrand doesnot have any built-inrulesfor that.

Sidebar: Node Special Attributes

The example uses a Node special attribute (. base, the file without its suffix), a concept which has not
been introduced yet, but will appear in several subsequent examples (see details in the Reference Manual
section Substitution: Special Attributes). Dueto the quirks of SCons' deferred eval uation scheme, node special
attribues do not currently work in source and target argumentsif thereplacement isastring (like' f co. i n").
They do work fine in strings describing actions. You can give SCons a little help by manually converting
the filename string to a Node (see Section 5.2, “Explicitly Creating File and Directory Nodes’), which isthe
approach used in the example.

The method described in Section 9.2, “ Controlling How SCons Prints Build Commands: the $* COMSTRV ariables’ for
controlling build output works well when used with pre-defined builders which have pre-defined * COVSTR variables
for that purpose, but that is not the case when calling Conmmand, where SCons has no specific knowledge of the action
ahead of time. If the action argument to Conmraind is not already an Action object, it will construct one for you with
suitable defaults, which include a message based on the type of action. However, you can also construct the Action
object yourself to pass to Comrand, which gives you much more control. Using theact i on keyword can aso help
make such lines easier to read. Here's an evolution of the example from above showing this approach:

env = Environnent ()

def build(target, source, env):
Whatever it takes to build
return None

act = Action(build, cndstr="Building ${TARGET}")
env. Cormand("' ${ SOURCE. base}.out', File('foo.in'), action=act)
Which executes as follows:

% scons -Q
Bui | di ng f 0o. out

Iy
=== SCONS 134

19 Extending SCons:

Pseudo-Builders and the
AddMethod function

The AddMet hod function is used to add a method to an environment. It is typically used to add a "pseudo-builder,"
afunction that looks like a Builder but wraps up calls to multiple other Builders or otherwise processes its arguments
before calling one or more Builders.

In the following example, we want to install the program into the standard / usr / bi n directory hierarchy, but also
copy itintoalocal i nst al | / bi n directory from which a package might be built:

def install _in_bin_dirs(env, source):
"""Install source in both bin directories"""
il = -env.lnstall ("$BIN', source)
i2 = env.Instal |l ("$LOCALBI N', source)
return [i1[0], i2[0]] # Return a list, like a normal builder

env = Environment (BI N='/usr/bin', LOCALBIN='"#install/bin")
env. AddMet hod(install _in_bin_dirs, "lInstalllnBinDirs")
env.InstallInBinDirs(Progran{' hello.c')) # installs hello in both bin directories

This produces the following:

% scons -Q /

cc -o hello.o -c hello.c

cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello"
Install file: "hello" as "install/bin/hello"

A pseudo-builder is useful because it gives you more flexibility parsing arguments than you can get with a standard
Builder. The next example shows a pseudo-builder with a named argument that modifies the filename, and a separate
optional argument for aresource file (rather than having the builder figure it out by file extension). This example also
demonstrates using the global AddMet hod function to add a method to the global Environment class, so it will be
available in all subsequently created environments.

def

Bui | dTest Prog(env, testfile, resourcefile="", testdir="tests"):
"""Build the test program
Prepends "test " to src and target and puts the target into testdir.
If the build is running on Wndows, also make use of a resource file,
i f suppli ed.
srcfile = f"test _{testfile}.c"
target = f"{testdir}/test {testfile}"
if env[' PLATFORM] == 'wi n32' and resourcefile:
resfile = env. RES(resourcefile)
p = env.Progran(target, [srcfile, resfile])
el se:
p = env.Progran(target, srcfile)
return p

AddMet hod(Envi r onment, Bui | dTest Pr og)

env

= Envi ronnent ()

env. Bui | dTest Prog(' stuff', resourcefile="res.rc')

This produces the following on Linux:

% scons -Q
cc -o test _stuff.o -c test_stuff.c
cc -0 tests/test stuff test _stuff.o

And the following on Windows:

C.\>scons -Q
rc /nologo /fores.res res.rc

cl

/ Fotest _stuff.obj /c test _stuff.c /nol ogo

link /nologo /QUT:tests\test stuff.exe test stuff.obj res.res
enmbedMani f est ExeCheck(target, source, env)

Using AddMet hod is better than just adding an instance method to a construction environment because it gets called
as a proper method, and because AddMet hod provides for copying the method to any clones of the construction
environment instance.

~

'—‘-‘ SCONS 136

20 Extending SCons: Writing
Your Own Scanners

SCons has built-in Scannersthat know how to look in C/C++, Fortran, D, IDL, LaTeX, Python and SWIG source files
for information about other files that targets built from those files depend on. For example, if you have a file format
which uses#i ncl ude to specify fileswhich should be included into the source file when it is processed, you can use
an existing scanner already included in SCons. Y ou can use the same mechanisms that SCons uses to create its built-
in Scanners to write Scanners of your own for file types that SCons does not know how to scan "out of the box."

20.1. A Simple Scanner Example

Suppose, for example, that we want to create a simple Scanner for . k files. A . k file contains some text that will be
processed, and can include other files on lines that begin withi ncl ude followed by afile name:

i ncl ude fil enane. k

Scanning afile will be handled by a Python function that you must supply. Hereis afunction that will use the Python
r e moduleto scan for thei ncl ude linesin our example:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path, arg=None):
contents = node.get _text contents()
return env. File(include_re.findall (contents))

It isimportant to note that you have to return alist of File nodes from the scanner function, simple strings for the file
names won't do. Asin the examples we are showing here, you can usethe Fi | e function of your current construction
environment in order to create nodes on the fly from a sequence of file names with relative paths.

The scanner function must accept the four specified arguments and return alist of implicit dependencies. Presumably,
these would be dependencies found from examining the contents of the file, although the function can perform any
manipulation at all to generate the list of dependencies.

A Simple Scanner Example

node
An SCons node object representing the file being scanned. The path name to the file can be used by converting
the node to a string using the st r function, or an internal SCons get _t ext _cont ent s object method can
be used to fetch the contents.

env
The construction environment in effect for this scan. The scanner function may choose to use construction
variables from this environment to affect its behavior.

pat h
A list of directories that form the search path for included files for this Scanner. This is how SCons handles the
$CPPPATHand $L1 BPATH variables.

arg
An optional argument that can be passed to this scanner function when it is called from a scanner instance. The
argument is only supplied if it was given when the scanner instance is created (see the manpage section " Scanner
Objects"). This can be useful, for example, to distinguish which scanner type called us, if the function might be
bound to several scanner objects. Since the argument isonly supplied in the function call if it was defined for that
scanner, the function needs to be prepared to possibly be called in different waysif multiple scanners are expected
to use thisfunction - giving the parameter a default value as shown above is a good way to do this. If the function
to scanner relationship will be 1:1, just make sure they match.

A scanner object is created using the Scanner function, which typically takesan skeys argument to associate afile
suffix with this Scanner. The scanner object must then be associated with the $SCANNERS construction variable in
the current construction environment, typically by using the Append method:

kscan = Scanner (functi on=kfile_scan, skeys=['.k'])
env. Append(SCANNERS=kscan)

Let's put this all together. Our new file type, with the . k suffix, will be processed by a command named kpr ocess,
which livesin non-standard location/ usr / | ocal / bi n, sowe add that path to the execution environment so SCons
can find it. Hereswhat it looks like:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path):
contents = node.get _text contents()
i ncl udes = include_re.findall (contents)
return env. Fil e(incl udes)

kscan = Scanner (functi on=kfil e_scan, skeys=['.k'])
env = Environnent ()

env. AppendENVPat h(' PATH , '/usr/l ocal /bin")

env. Append(SCANNERS=kscan)

env. Conmand(' foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')

Assume af 0o. k filelikethis:

Iy
=== SCONS 138

Adding a search path to a Scanner: Fi ndPat hDi r s

some initial text
i ncl ude other file
some ot her text

Now if we run scons we can see that the scanner works - it identified the dependency ot her _f i | e viathe detected
i ncl ude line, although we get an error message because we forgot to create that file!

% scons -Q
scons: *** [foo] Inplicit dependency “other file' not found, needed by target “foo'.

20.2. Adding a search path to a Scanner:
Fi ndPat hDi rs

If the build tool in question will use a path variable to search for included files or other dependencies, then the Scanner
will need to take that path variable into account as well - the same way $CPPPATH is used for files processed by the
C Preprocessor (used for C, C++, Fortran and others). Path variables may be lists of nodes or semicolon-separated
strings (SCons uses a semicolon here irrespective of the pathlist separator used by the native operating system), and
may contain construction variables to be expanded. A Scanner can take apat h_f unct i on to process such a path
variable; the function produces atuple of paths that is passed to the scanner function asitspat h parameter.

To make this easy, SCons providesthe premade Fi ndPat hDi r s function which returns a callable to expand agiven
path variable (given as an SCons construction variable name) to a tuple of paths at the time the Scanner is called.
Deferring evaluation until that point allows, for instance, the path to contain $TARGET references which differ for
each file scanned.

Using Fi ndPat hDi r s is easy. Continuing the above example, using $KPATH as the construction variable to
hold the paths (analogous to $CPPPATH), we just modify the call to the Scanner factory function to include a
pat h_functi on keyword argument:

kscan = Scanner (
function=kfile_scan,
skeys=['.k'],
pat h_f uncti on=Fi ndPat hDi r s(' KPATH),

Fi ndPat hDi r s iscalled when the Scanner is created, and the callable object it returnsis stored as an attribute in the
scanner. When the scanner isinvoked, it calls that object, which processes the SKPATH from the current construction
environment, doing necessary expansions and, if necessary, adds related repository and variant directories, producing
a(possibly empty) tuple of pathsthat is passed on to the scanner function. The scanner function is then responsible for
using that list of pathsto locate the include files identified by the scan. The next section will show an example of that.

As a side note, the returned method stores the path in an efficient way so lookups are fast even when variable
substitutions may be needed. Thisisimportant since many files get scanned in atypical build.

20.3. Using scanners with Builders

One approach for introducing a Scanner into the build isin conjunction with aBuilder. There are two relevant optional
parameters we can use when creating aBuilder: sour ce_scanner andt ar get _scanner.sour ce_scanner
isused for scanning sourcefiles, andt ar get _scanner isused for scanning the target once it is generated.

Iy
=== SCONS 139

Using scanners with Builders

i mport os, re
include_re = re.conpile(r"”include\s+(\S+)$", re.M

def kfile_scan(node, env, path, arg=None):

i ncludes = include_re.findall (node.get text contents())
print(f"DEBUG scan of {str(node)!r} found {includes}")
deps = []

for inc in includes:
for dir in path:
file = str(dir) + os.sep + inc
if os.path.exists(file):
deps. append(file)
br eak
print(f"DEBUG scanned dependenci es found: {deps}")
return env. Fi |l e(deps)

kscan = Scanner (
functi on=kfil e_scan,
skeys=[". k"],
pat h_f uncti on=Fi ndPat hDi r s(" KPATH") ,

def build_function(target, source, env):
Code to build "target” from "source"
return None

bl d = Bui l der (
action=bui |l d_functi on,
suf fix=".k",
sour ce_scanner =kscan,
src_suffix=".input",

env = Environment (BU LDERS={"KFi | e": bld}, KPATH="inc")
env.KFile("file")

Running this example would only show that thestub bui | d_f unct i on isgetting called, so some debug printswere
added to the scanner function, just to show the scanner is being invoked.

% scons -Q

DEBUG scan of 'file.input’ found ['other file']
DEBUG scanned dependencies found: ['inc/other file']
build _function(["file. k"], ["file.input"])

The path-search implementation in kf i | e_scan works, but is quite ssimple-minded - a production scanner will
probably do something more sophisticated.

An emitter function can modify thelist of sources or targets passed to the action function when the Builder istriggered.

A scanner function will not affect the list of sources or targets seen by the Builder during the build action. The scanner
function will, however, affect if the Builder should rebuild (if any of the files sourced by the Scanner have changed
for example).

Iy
=== SCONS 140

21 Multi-Platform

Configuration (Autoconf
Functionality)

SConshasintegrated support for build configuration similar in styleto GNU Autoconf, but designed to be transparently
multi-platform. The configuration system can help figure out if external build requirements such as system libraries
or header files are available on the build system. This section describes how to use this SCons feature. (See also the
SCons man page for additional information).

21.1. Configure Contexts

The basic framework for multi-platform build configuration in SCons is to create a configure context inside a
construction environment by calling the Conf i gur e function, perform the desired checks for libraries, functions,
header files, etc., and then call the configure context's Fi ni sh method to finish off the configuration:

env = Environnent ()

conf = Confi gure(env)

Checks for libraries, header files, etc. go here!
env = conf. Fi ni sh()

The Fi ni sh call is required; if a new context is created while a context is active, even in a different construction
environment, scons will complain and exit.

SCons provides a number of pre-defined basic checks, as well as a mechanism for adding your own custom checks.

There are afew possible strategies for failing configure checks. Some checks may be for features without which you
cannot proceed. The simple approach hereisjust to exit SCons at that point - anumber of the examplesin this chapter
are coded that way. If there are multiple hard requirements, however, it may be friendlier to the user to set aflag in
case of any fails of hard requirements and accumulate a record of them, so that on the completion of the configure
context they can all be listed prior to failing the build - as it can be frustrating to have to iterate through the setup,
fixing one new requirement each iteration. Other checks may be for features which you can do without, and here the
strategy will usually beto set a construction variable which the rest of the build can examine for its absence/presence,
or to set particular compiler flags, library lists, etc. as appropriate for the circumstances, so you can proceed with the
build appropriately based on available features.

Checking for the Existence of Header Files

Note that SCons usesits own dependency mechanism to determine when a check needs to be run--that is, SCons does
not run the checks every time it is invoked, but caches the values returned by previous checks and uses the cached
values unless something has changed. This saves a tremendous amount of developer time while working on cross-
platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom checks.

21.2. Checking for the Existence of Header
Files

Testing the existence of a header file requires knowing what language the header fileis. Thisinformation is supplied
inthel anguage keyword parameter to the CheckHeader method. Since scons grew up in aworld of C/C++ code,
aconfigure context also has a Check CHeader method that specifically checks for the existence of a C header file:

env = Envi ronnent ()
conf = Confi gure(env)
i f not conf.CheckCHeader (' math.h'):
print('Math.h nust be installed!")
Exit (1)
i f conf.CheckCHeader (' foo.h'):
conf . env. Append(CPPDEFI NES=' HAS FOO H)
env = conf. Finish()

As shown in the example, depending on the circumstances you can choose to terminate the build if a given header file
doesn't exist, or you can modify the construction environment based on the presence or absence of a header file (the
same appliesto any other check). If there are amany elements to check for, it may be friendlier for the user if you do
not terminate on the first failure, but track the problems found until the end and report on all of them, that way the user
does not have to iterate multiple times, each time finding one new dependency that needs to be installed.

If you need to check for the existence a C++ header file, use the Check CXXHeader method:

env = Environnent ()

conf = Configure(env)

i f not conf.CheckCXXHeader (' vector.h'):
print('vector.h nmust be installed!")
Exit(1)

env = conf. Fini sh()

21.3. Checking for the Availability of a Function

Check for the availability of a specific function using the Check Func method:

env = Environment ()
conf = Configure(env)
i f not conf.CheckFunc('strcpy'):
print('Did not find strcpy(), using |ocal version')
conf . env. Append(CPPDEFI NES=(" strcpy', ' ny_l ocal _strcpy'))
env = conf. Fini sh()

Iy
=== SCONS 142

Checking for the Availability of aLibrary

21.4. Checking for the Availability of a Library

Check for the availability of a library using the CheckLi b method. You only specify the base part of the library
name, you don't needtoadd al i b prefixora. aor. | i b suffix:

env = Environnent ()

conf = Confi gure(env)

i f not conf.CheckLib('m):
print('Did not find libma or mlib, exiting!")
Exit(1)

env = conf. Fi ni sh()

Because the ability to use a library successfully often depends on having access to a header file that describes the
library'sinterface, you can check for alibrary and aheader file at the sametimeby usingthe CheckLi bW t hHeader
method:

env = Environnent ()

conf = Configure(env)

i f not conf.CheckLi bWthHeader('mi, 'math.h', |anguage='c'):
print("Did not find libma or mlib, exiting!')
Exit(1)

env = conf. Fini sh()

Thisis essentially shorthand for separate callsto the CheckHeader and CheckLi b functions.

21.5. Checking for the Availability of at ypedef

Check for the availability of at ypedef by usingthe CheckType method:

env = Environment ()

conf = Confi gure(env)

i f not conf.CheckType(' off t'):
print('Did not find off _t typedef, assuming int')
conf . env. Append(CPPDEFI NES=("'of f t',"int"'))

env = conf. Fi ni sh()

Y ou can also add a string that will be placed at the beginning of thetest filethat will be used to check for thet ypedef .
This provides away to specify files that must be included to find thet ypedef :

env = Environment ()

conf = Configure(env)

i f not conf.CheckType('off _t', '#include <sys/types.h>\n'):
print('Did not find off_t typedef, assuming int')
conf . env. Append(CPPDEFI NES=("'of f _t',"int"'))

env = conf. Fini sh()

Iy
=== SCONS 143

Checking the size of a datatype

21.6. Checking the size of a datatype

Check the size of a datatype by using the Check TypeSi ze method:

env = Environnent ()

conf = Confi gure(env)

int_size = conf.CheckTypeSi ze(' unsi gned int')
print('sizeof unsigned int is', int_size)

env = conf. Fi ni sh()

% scons -Q
si zeof unsigned int is 4
scons: ~.' is up to date.

21.7. Checking for the Presence of a program

Check for the presence of a program by using the Check Pr og method:

env = Environment ()

conf = Configure(env)

i f not conf.CheckProg('foobar'):
print('Unable to find the program foobar on the systeni)
Exit (1)

env = conf. Fini sh()

21.8. Extending SCons: Adding Your Own
Custom Checks

A custom check is a Python function that checks for a certain condition to exist on the running system, usually using
methods that SCons supplies to take care of the details of checking whether a compilation succeeds, alink succeeds,
aprogram isrunnable, etc. A simple custom check for the existence of a specific library might look as follows:

mylib test source file = """
#i ncl ude <nylib. h>
int main(int argc, char **argv)
{
MyLi brary nylib(argc, argv);
return O;

def CheckM/Li brary(context):

Iy
=== SCONS 144

Extending SCons. Adding Y our Own Custom Checks

cont ext . Message(' Checki ng for MLibrary...")

result = context. TryLink(nmylib test source file, '.c")
context.Result(result)

return result

TheMessage and Resul t methods should typically begin and end a custom check to let the user know what's going
on: the Message call prints the specified message (with no trailing newline) and the Resul t cal printsyes if the
check succeeds and no if it doesn't. The Tr yLi nk method actually tests for whether the specified program text will
successfully link.

(Note that acustom check can modify its check based on any argumentsyou chooseto passit, or by using or modifying
the configure context environment in the cont ext . env attribute.)

This custom check function is then attached to the configure context by passing a dictionary to the Conf i gur e call
that maps a name of the check to the underlying function:

env = Environment ()
conf = Configure(env, customtests={"'CheckMy/Library': CheckMLibrary})

You'll typicaly want to make the check and the function name the same, as we've done here, to avoid potential
confusion.

We can then put these pieces together and actualy call the CheckMyLi br ar y check asfollows:

nylib_test source file =
#i ncl ude <nylib. h>
int main(int argc, char **argv)

{
MyLi brary nylib(argc, argv);
return O;
}
def CheckMyLi brary(context):
cont ext . Message(' Checking for MyLibrary... ")
result = context. TryLink(mylib_test_source file, '.c")

cont ext. Resul t(result)
return result

env = Environnent ()
conf = Configure(env, customtests={"'CheckM/Library': CheckMLibrary})
i f not conf.CheckMyLi brary():
print('MLibrary is not installed!")
Exit (1)
env = conf. Fi ni sh()

W woul d then add actual calls like Program() to build
sonet hing using the "env" construction environnent.

If MyLibrary is not installed on the system, the output will ook like:

Iy
=== SCONS 145

Not Configuring When Cleaning Targets

% scons

scons: Readi ng SConscript file ...
Checking for MyLibrary... no

MyLi brary is not install ed!

If MyLibrary isinstalled, the output will look like:

% scons

scons: Readi ng SConscript file ...
Checking for MyLibrary... yes
scons: done readi ng SConscri pt
scons: Building targets ...

21.9. Not Configuring When Cleaning Targets

Using multi-platform configuration as described in the previous sections will run the configuration commands even
when invoking scons - ¢ to clean targets:

% scons -Q -c

Checking for MyLibrary... yes
Renoved f o00. 0

Renoved foo

Although running the platform checks when removing targets doesn't hurt anything, it's usually unnecessary. You
can avoid this by using the Get Opt i on method to check whether the - ¢ (clean) option has been invoked on the
command line:

env = Environnent ()
if not env.GetOption('clean'):
conf = Configure(env, customtests={"'CheckM/Library': CheckMLibrary})
i f not conf.CheckMyLi brary():
print('MyLibrary is not installed!")
Exit (1)
env = conf. Fi ni sh()

% scons -Q -c
Renpved f o0o0. 0
Renpved f oo

b4

SCONS 146

22 Caching Built Files

On multi-devel oper software projects, you can sometimes speed up every developer's builds alot by allowing them to
share a cache of the derived filesthat they build. After all, itisrelatively rare that any in-progress change affects more
than afew derived files, most will be unchanged. Using a cache can also help an individual developer: for exampleif
you wish to start work on a new feature in a clean tree, those build artifacts which could be reused can be retrieved
from the cache to populate the tree and save alot of initial build time. SCons makes this easy and reliable.

22.1. Specifying the Derived-File Cache
Directory

To enable caching of derived files, use the CacheDi r functioninany SConscri pt file
CacheDir (' /usr/local/build_cache')

The cache directory you specify must have read and write access for all developers who will be accessing the cached
files (if - - cache-readonl y is used, only read access is required). It should also be in some central location
that al builds will be able to access. In environments where developers are using separate systems (like individual
workstations) for builds, this directory would typically be on a shared or NFS-mounted file system. While SCons will
create the specified cache directory as needed, in this multiuser scenario it is usually best to create it ahead of time,
so the access rights can be set up correctly.

Here's what happens: When a build has a CacheDi r specified, every time afile is built, it is stored in that cache
directory indexed by its build signature. On subsequent builds, before an action is invoked to build afile, the build
signature is computed and SCons checks the derived-file cache directory to see if a file with the exact same build
signature already exists. 11f s0, the derived filewill not be built local ly, but will be copied into the local build directory
from the derived-file cache directory, like this:

% scons -Q

L A few insidedetails; SConstrackstwo main kinds of cryptographic hashes: acontent signature, which isahash of the contents of afile participating
in the build (dependencies as well astargets); and a build signature, which is a hash of the elements needed to build atarget, such as the command
line, the contents of the sources, and possibly information about tools used in the build. The hash function produces a unique signature from its
inputs, no other set of inputs can produce that same signature. The build signature from building atarget is used as the filename of the target filein
the derived-file cache - that way lookups are efficient, just compute a build signature and seeif afile exists with that as the name.

The use of the build signature provides protection from conflicts: if two developers have different setups, so they would produce built objects that
are not identical, then because the difference in tools will show up in the build signature, which is used as the name of the cache entry, they will
end up being stored as separate entries.

K eeping Build Output Consistent

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q -c

Rermoved hel l 0. 0

Rermoved hel |l o

% scons -Q

Retrieved " hello.o' from cache
Retrieved "hello' from cache

Note that the CacheDi r feature requires that the build signature be calculated, even if you configure SCons to
use timestamps to decide if files are up to date (see the Chapter 6, Dependencies chapter for information about the
Deci der function), since the build signature is used to determine if a target file exists in the cache. Consequently,
using CacheDi r may reduce or negate any performance improvements from using timestamps for up-to-date
decisions.

22.2. Keeping Build Output Consistent

One potential drawback to using a derived-file cache is that the output printed by SCons can be inconsistent from
invocation to invocation, because any given file may be rebuilt one time and retrieved from the derived-file cache the
next time. This can make analyzing build output more difficult, especially for automated scripts that expect consistent
output each time.

If, however, you use the - - cache- show option, SCons will print the command line that it would have executed to
build the file, even when it is retrieving the file from the derived-file cache. This keeps the build output consistent
across builds:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q -c

Renpoved hell 0.0

Renpoved hel |l o

% scons -Q --cache-show
cc -0 hello.o -c hello.c
cc -0 hello hello.o

The trade-off, of course, is that you no longer know whether or not SCons has retrieved a derived file from cache or
has rebuilt it locally.

22.3. Not Using the Derived-File Cache for
Specific Files

Y ou may want to disable caching for certain specific filesin your configuration. For example, if you only want to put
executable filesin acentral cache, but not the intermediate object files, you can use the NoCac he function to specify
that the object files should not be cached:

env = Environment ()

obj = env.bject('hello.c")
env. Progran(' hello.c")
CacheDir (' cache')

NoCache(' hel |l 0. 0")

Iy
=== SCONS 148

Disabling the Derived-File Cache

Then, when you run scons after cleaning the built targets, it will recompile the object file locally (since it doesn't
exist in the derived-file cache directory), but still realize that the derived-file cache directory contains an up-to-date
executable program that can be retrieved instead of re-linking:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q -c

Renpoved hell 0.0

Renpoved hel |l o

% scons -Q

cc -0 hello.o -c hello.c
Retrieved "hello' from cache

22.4. Disabling the Derived-File Cache

Retrieving an already-built file from the derived-file cache is usually a significant time-savings over rebuilding the
file, but how much of asavings (or even whether it savestimeat all) can depend agreat deal on your system or network
configuration. For example, retrieving cached files from abusy server over abusy network might end up being slower
than rebuilding the fileslocally.

In these cases, you can specify the - - cache- di sabl e command-line option to tell SCons to not retrieve already-
built files from the derived-file cache directory:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q -c

Renpved hell 0.0

Renpved hell o

% scons -Q

Retrieved "hello.o' from cache
Retrieved " hello' from cache
% scons -Q -c

Renpved hell 0.0

Renpved hell o

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c

cc -0 hello hello.o

22.5. Populating a Derived-File Cache With
Already-Built Files

Sometimes, you may have one or more derived files already built in your local build tree that you wish to make
available to other people doing builds. For example, you may find it more effective to perform integration builds with
the cache disabled (per the previous section) and only populate the derived-file cache directory with the built files after
the integration build has completed successfully. Thisway, the cache will only get filled up with derived filesthat are
part of acomplete, successful build not with filesthat might belater overwritten while you debug integration problems.

Iy
=== SCONS 149

Minimizing Cache Contention: the - - r andomOption

In this case, you can use the - - cache- f or ce option to tell SCons to put all derived filesin the cache, even if the
filesaready exist in your local tree from having been built by a previous invocation:

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q -c

Renmoved hell 0.0

Renmpoved hell o

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q --cache-force

scons: is up to date.
% scons -Q
scons: ~.' is up to date.

Notice how the above sample run demonstrates that the - - cache- di sabl e option avoids putting the built
hel | 0. o and hel | o filesin the cache, but after using the - - cache- f or ce option, the files have been put in the
cache for the next invocation to retrieve.

22.6. Minimizing Cache Contention: the - -
randomOption

If you allow multiple builds to update the derived-file cache directory simultaneously, two builds that occur at the
same time can sometimes start "racing" with one another to build the same files in the same order. If, for example,
you are linking multiple files into an executable program:

Program('prog', ['fl1.c', 'f2.c', 'f3.c', 'fd4.c', 'f5.¢c'])

SConswill normally build the input object files on which the program depends in their normal, sorted order:

% scons -Q

cc -o fl.o -c fil.c
cc -o f4.0 -c f4.c
cc -o f3.0 -c f3.c
cc -o f5.0 -c f5.¢c
cc -o f2.0 -c f2.c

cc -o prog fl.o0 f2.0 f3.0 f4.0 f5.0

But if two such builds take place simultaneously, they may each look in the cache at nearly the same time and both
decide that f 1. o must be rebuilt and pushed into the derived-file cache directory, then both decide that f 2. 0 must
be rebuilt (and pushed into the derived-file cache directory), then both decide that f 3. 0 must be rebuilt... Thiswon't
cause any actual build problems--both builds will succeed, generate correct output files, and populate the cache--but
it does represent wasted effort.

To dleviate such contention for the cache, you can use the - - r andomcommand-line option to tell SCons to build
dependenciesin arandom order:

% scons -Q --random
cc -o f3.0-c f3.c

Iy
=== SCONS 150

Using a Custom CacheDir Class

cc -o fl.o -c f1.
cc -o f5.0 -c f5.
cc -o f2.0 -c f2.
cc -o f4.0 -c f4.c

cc -o prog fl.o f2.0 f3.0 f4.0 f5.0

O 00

Multiple builds using the - - r andomoption will usually build their dependenciesin different, random orders, which
minimizes the chances for a lot of contention for same-named files in the derived-file cache directory. Multiple
simultaneous builds might still race to try to build the same target file on occasion, but long sequences of inefficient
contention should berare.

Note, of course, the - - r andomoption will cause the output that SCons prints to be inconsistent from invocation to
invocation, which may be an issue when trying to compare output from different build runs.

If you want to make sure dependencies will be built in a random order without having to specify the - - r andomon
very command line, you can use the Set Opt i on function to set ther andomoption within any SConscr i pt file

Set Opti on(' random , 1)
Program('prog', ['f1.c', 'f2.c', 'f3.c', 'fd4.¢c', 'f5.¢c'])

22.7. Using a Custom CacheDir Class

Y ou can customize the behavior of derived-file caching to add your own features, for example to support compressed
and/or encrypted cachefiles, modify cachefile permissionsto better support shared caches, gather additional statistics
and data, etc.

To define custom cache behavior, subclass the SCons. CacheDi r. CacheDi r class, specializing those methods
you want to change. Y ou can pass this custom class asthe cust om cl ass parameter when calling CacheDi r for
global reach, or when callingenv. CacheDi r for aspecific environment. Y ou can also set the construction variable
$CACHEDI R_CLASS to the custom class - this needs to happen before configuring the cache in that environment.
SConswill internally invoke and use your custom class when performing cache operations. The below example shows
a simple use case of overriding the copy_f rom cache method to record the total number of bytes pulled from
the cache.

i mport os
i mport SCons. CacheDir

cl ass Cust omCacheDi r (SCons. CacheDir. CacheDir):
total retrieved = 0

@l assnet hod

def copy_from cache(cls, env, src, dst):
record total bytes pulled from cache
cls.total _retrieved += os.stat(src).st_size
return super().copy_fromcache(env, src, dst)

env = Environment ()
env. CacheDi r (' scons-cache', custom cl ass=Cust ontCacheDi r)
...

Iy
=== SCONS 151

23 Alias Targets

We've already seen how you can usethe Al i as function to create atarget namedi nstal | :

env = Environment ()

hello = env. Program(' hello.c")
env.lnstall ('/usr/bin', hello)
env.Alias('install', '/usr/bin")

Y ou can then use this aias on the command line to tell SCons more naturally that you want to install files:

% scons -Q instal

cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

Like other Builder methods, though, the Al i as method returns an object representing the alias being built. Y ou can
then use this object asinput to anothother Builder. Thisisespecially useful if you use such an object asinput to another
call tothe Al i as Builder, allowing you to create a hierarchy of nested aliases:

env = Environment ()

p = env. Progran('foo.c')

| = env.Library('bar.c')
env.Install ('/usr/bin', p)

env.Install ('/usr/lib, 1)

ib =env.Alias('install-bin', '/usr/bin")

il =env.Alias('install-lib", '"/usr/lib")

env.Alias('install', [ib, il])

This example defines separatei nstal | ,instal |l -bin,andi nstal | -1i b aliases, allowing you finer control

over what getsinstalled:

% scons -Qinstall-bin

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"
% scons -Qinstall-lib

CcC -0 bar.o -c bar.c

ar rc libbar.a bar.o

ranlib |ibbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /

Rermoved foo. 0

Rermoved f oo

Rermoved /usr/ bin/foo

Renmoved bar. o

Rermoved |i bbar. a

Rermoved /usr/lib/libbar.a

% scons -Q instal

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"

CcC -0 bar.o -c bar.c

ar rc libbar.a bar.o

ranlib |ibbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"

Iy
=== SCONS 153

24 Java Builds

So far, we've been using examples of building C and C++ programs to demonstrate the features of SCons. SCons aso
supports building Java programs, but Java builds are handled slightly differently, which reflects the waysin which the
Java compiler and tools build programs differently than other languages tool chains.

24.1. Building Java Class Files: the Java
Builder

The basic activity when programming in Java, of course, is to take one or more . j ava files containing Java source
code and to call the Java compiler to turn them into one or more . cl ass files. In SCons, you do this by giving the
Java Builder atarget directory inwhichtoput the. cl ass files, and asourcedirectory that containsthe. j ava files:

Java(' cl asses', 'src')

If the sr ¢ directory containsthree . j ava sourcefiles, then running SCons might look like this:

% scons -Q
javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/Exanpl e3.java

SCons will actually search the sr ¢ directory tree for all of the . j ava files. The Java compiler will then create the
necessary classfilesinthecl asses subdirectory, based on the class names found inthe . j ava files.

24.2. How SCons Handles Java Dependencies

In addition to searching the source directory for . j ava files, SConsactually runsthe. j ava filesthrough a stripped-
down Java parser that figures out what classes are defined. In other words, SCons knows, without you having to tell
it, what . cl ass fileswill be produced by the javac call. So our one-liner example from the preceding section:

Java(' cl asses', 'src')
Will not only tell you reliably that the. cl ass filesinthecl asses subdirectory are up-to-date:

% scons -Q
javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/ Exanpl e3.j ava

Building Java Archive (. j ar) Files: the Jar Builder

% scons -Q cl asses
scons: "classes' is up to date.

But it will also remove al of the generated . cl ass files, even for inner classes, without you having to specify them
manually. For example, if our Exanpl el. j ava and Exanpl e3. j ava files both define additional classes, and
the class defined in Exanpl e2. j ava has an inner class, running scons - ¢ will clean up al of those . cl ass
filesaswell:

% scons -Q

javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/Exanp
% scons -Q -c cl asses

Renoved cl asses/ Exanpl el. cl ass

Renmoved cl asses/ Addi ti onal C assl. cl ass

Renmoved cl asses/ Exanpl e2$l nner 2. cl ass

Renoved cl asses/ Exanpl e2. cl ass

Renoved cl asses/ Exanpl e3. cl ass

Renoved cl asses/ Addi ti onal Cl ass3. cl ass

To ensure correct handling of . ¢l ass dependenciesin al cases, you need to tell SCons which Javaversion isbeing
used. This is needed because Java 1.5 changed the . cl ass file names for nested anonymous inner classes. Use the
JAVAVERSI ON construction variable to specify the version in use. With Java 1.6, the one-liner example can then
be defined like this:

Java(' classes', 'src', JAVAVERSI ON='1.6")

See JAVAVERSI ON in the man page for more information.

24.3. Building Java Archive (.] ar) Files: the
Jar Builder

After building the classfiles, it's common to collect them into a Javaarchive (. j ar) file, which you do by calling the
Jar Builder. If youwant tojust collect al of the classfileswithin asubdirectory, you can just specify that subdirectory
astheJar source:

Java(target='classes', source='src')
Jar(target="test.jar', source='classes')

SCons will then pass that directory to the jar command, which will collect all of the underlying . cl ass files:

% scons -Q

| e3.java

javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/ Exanpl e3.j ava

jar cf test.jar classes

If you want to keep al of the. cl ass files for multiple programs in one location, and only archive some of them in
each. | ar file, you can passtheJar builder alist of filesasits source. It's extremely simpleto create multiple. j ar
filesthisway, using thelists of target classfilescreated by callstothe Java builder assourcestothevariousJar calls:

progl class files
prog2_cl ass files

Java(target="classes', source=' progl')
Java(target='classes', source=' prog2')

Iy
=== SCONS 155

Building C Header and Stub Files: the JavaH Builder

Jar(target="progl.jar', source=progl class files)
Jar(target='prog2.jar', source=prog2 class _files)

Thiswill then create pr ogl. j ar and pr og2. j ar next to the subdirectories that contain their . j ava files:

% scons -Q

javac -d cl asses -sourcepath progl progl/ Exanpl el.java progl/ Exanpl e2.j ava
javac -d cl asses -sourcepath prog2 prog2/ Exanpl e3.java prog2/ Exanpl e4. j ava
jar cf progl.jar -C classes Exanpl el.class -C cl asses Exanpl e2. cl ass

jar cf prog2.jar -C classes Exanpl e3.cl ass -C cl asses Exanpl e4. cl ass

24.4. Building C Header and Stub Files: the
JavaHBuilder

Y ou can generate C header and source files for implementing native methods, by using the JavaH Builder. There are
several ways of using the JavaH Builder. One typical invocation might look like:

cl asses = Java(target='cl asses', source="src/pkg/sub')
JavaH(target ="' native', source=cl asses)

The source is alist of class files generated by the call to the Java Builder, and the target is the output directory in
which we want the C header files placed. The target gets converted into the - d when SCons runs javah:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el. java src/ pkg/ sub/ Exanpl e2.] a
javah -d native -classpath cl asses pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanmpl e3

In this case, the call to javah will generate the header files nati ve/ pkg_sub_Exanpl el. h, nati ve/
pkg _sub_Exanpl e2. h and nat i ve/ pkg_sub_Exanpl e3. h. Notice that SCons remembered that the class
files were generated with a target directory of cl asses, and that it then specified that target directory as the -
cl asspat h option to the call to javah.

Although it's more convenient to use the list of class files returned by the Java Builder as the source of a call to
the JavaH Builder, you can specify the list of class files by hand, if you prefer. If you do, you need to set the
$JAVACLASSDI R construction variable when calling JavaH:

Java(target='cl asses', source='src/pkg/sub')
class file list = |

' cl asses/ pkg/ sub/ Exanpl el. cl ass',

' cl asses/ pkg/ sub/ Exanpl e2. cl ass',

' cl asses/ pkg/ sub/ Exanpl e3. cl ass',

]
JavaH(target='"native', source=class file |ist, JAVACLASSDI R='cl asses')

The $JAVACLASSDI R value then gets converted into the - ¢l asspat h when SCons runs javah:

% scons -Q
javac -d cl asses -sourcepath src/pkg/sub src/pkg/sub/Exanpl el.java src/pkg/sub/ Exanpl e2.j a
javah -d native -classpath cl asses pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanmpl e3

Iy
=== SCONS 156

Building RMI Stub and Skeleton Class Files: the RM C
Builder

Lastly, if you don't want a separate header file generated for each source file, you can specify an explicit File Node
asthe target of the JavaH Builder:

cl asses = Java(target='cl asses', source="src/pkg/sub')
JavaH(target=Fil e(' native.h'), source=cl asses)

Because SCons assumes by default that the target of the JavaH builder is a directory, you need to usethe Fi | e
function to make sure that SCons doesn't create a directory named nat i ve. h. When afile is used, though, SCons
correctly converts the file name into the javah - o option:

% scons -Q
javac -d cl asses -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el.java src/pkg/sub/ Exanpl e2.j a
javah -o native.h -cl asspath cl asses pkg. sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanpl e3

Note that the javah command was removed from the JDK as of JDK 10, and the approved method (available since
JDK 8) isto use javac to generate native headers at the same time as the Java source code is compiled. As such the
JavaH builder isof limited utility in later Java versions.

24.5. Building RMI Stub and Skeleton Class
Files: the RM CBuilder

You can generate Remote Method Invocation stubs by using the RM C Builder. The source is alist of directories,
typically returned by a call to the Java Builder, and the target is an output directory wherethe _St ub. cl ass and
_Skel . cl ass fileswill be placed:

cl asses = Java(target='cl asses', source=' src/pkg/sub')
RM C(target="outdir', source=classes)

As it did with the JavaH Builder, SCons remembers the class directory and passes it as the - cl asspat h option
tormic:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el.java src/ pkg/ sub/ Exanpl e2.j a
rmc -d outdir -classpath classes pkg. sub. Exanpl el pkg. sub. Exanpl e2

This example would generate the files out di r/ pkg/ sub/ Exanpl el_Skel . cl ass, outdir/ pkg/
sub/ Exanpl el_St ub. cl ass, outdir/ pkg/ sub/ Exanpl e2_Skel . cl ass and out di r/ pkg/ sub/
Exanpl e2_St ub. cl ass.

Iy
=== SCONS 157

25 Internationalization and
localization with gettext

The get t ext toolset supports internationalization and localization of SCons-based projects. Builders provided
by get t ext automatize generation and updates of trandlation files. You can manage translations and translation
templates similarly to how it's done with autotools.

25.1. Prerequisites

To follow examples provided in this chapter set up your operating system to support two or more languages. In
following examples we use localesen_US, de_DE, and pl _PL.

Ensure, that you have GNU gettext utilities [http://www.gnu.org/software/gettext/manual/gettext.html] installed on
your system.

To edit trandation files you may wish to install poedit [http://www.poedit.net/] editor.

25.2. Simple project

Let's start with avery simple project, the "Hello world" program for example

/* hello.c */
#i ncl ude <stdi o. h>
int main(int argc, char* argv[])
{
printf("Hello world\n");
return O;

}

Prepare a SConst r uct to compile the program as usua.

SConst ruct
env = Environnent ()
hello = Program(["hello.c"])

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.poedit.net/
http://www.poedit.net/

Simple project

Now well convert the project to a multilingual one. If you don't already have GNU gettext utilities [http:/
www.gnu.org/software/gettext/manual /gettext.html] installed, install them from your preferred package repository, or
download from http://ftp.gnu.org/gnu/gettext/ [http://ftp.gnu.org/gnu/gettext/]. For the purpose of this example, you
should have following three locales installed on your system: en_US, de_DE and pl _PL. On Debian, for example,
you may enable certain local es through dpkg-reconfigure locales.

First preparethe hel | 0. ¢ program for internationalization. Change the previous code so it reads as follows:

/* hello.c */

#i ncl ude <stdi o. h>

#i ncl ude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext dormai n("hel | 0", "I ocal e");
setl| ocal e(LC ALL, "");
t ext domai n("hel | 0");
printf(gettext("Hello world\n"));
return O;

Detailed recipes for such conversion can be found at http://www.gnu.org/software/gettext/manual /
gettext.html#Sources [http://www.gnu.org/software/gettext/manual/gettext.html#Sources]. Thegettext ("...")
has two purposes. First, it marks messages for the xgettext(1) program, which we will use to extract from the sources
the messages for localization. Second, it callstheget t ext library internalsto trandlate the message at runtime.

Now we shall instruct SCons how to generate and maintain trand ation files. For that, usethe Tr ans| at e builder and
MOFi | es builder. The first one takes source files, extracts internationalized messages from them, creates so-called
POT file (trandation template), and then creates PO trandation files, one for each requested language. Later, during
the development lifecycle, the builder keeps all these files up-to date. The MOFi | es builder compiles the POfilesto
binary form. Then install the MOfiles under directory called | ocal e.

The completed SConst r uct isasfollows:

SConst ruct
env = Environnment(tools = ['default', 'gettext'])
hell o = env. Progran(["hello.c"])
env[' XCETTEXTFLAGS'] = [
' - - package- nanme=%"' % ' hell o',
' - - package-version=%"' %'1.0',
]
po = env. Translate(["pl","en", "de"], ["hello.c"], POAUTONT = 1)
no = env. MOFi | es(po)
Instal |l As(["] ocal e/ en/ LC_ MESSAGES/ hel | 0. m0"], ["en.nm"])
Instal |l As(["] ocal e/ pl / LC_ MESSAGES/ hel | 0. m0"], ["pl.nm"])
Instal |l As(["] ocal e/ de/ LC_MESSAGES/ hel | 0. m0"], ["de.nmp"])

Generate the trandlation files with scons po-update. Y ou should see the output from SCons similar to this:

user @ost: $ scons po-update

Iy
=== SCONS 159

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://ftp.gnu.org/gnu/gettext/
http://ftp.gnu.org/gnu/gettext/
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources

Simple project

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

Entering '/ honme/ptomnulik/projects/tnp'
xget t ext

Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'

Witting 'messages.pot’ (new file)

meginit --no-translator -1 pl -i nessages.pot -o pl.po
Created pl. po.

msginit --no-translator -1 en -i nessages.pot -0 en.po
Creat ed en. po.

msginit --no-translator -1 de -i nessages.pot -o de.po

Creat ed de. po.
scons: done buil ding targets.

If everything isright, you should see following new files.

user@uost:$ |'s *. po*

de.po en.po nessages.pot pl.po

- - package- nane=hel | o --package-version=1.0 -0 -

hel |l o.c

Openen. po inpoedit and providethe English trandation to message" Hel | o wor | d\ n". Dothesamefor de. po

(deutsch) and pl . po (polish). Let the translations be, for example:

e en: "Welcone to beautiful world!'\n"
e de: "Hallo Welt!\n"
e pl: "Wtaj swieciel\n"

Now compile the project by executing scons. The output should be similar to this:

user @ost: $ scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

msgfm -c -o de.np de. po

nsgfnt -c -0 en.no en. po

gcc -0 hello.o -c hello.c

gcc -0 hello hello.o

Install file: "de.m" as "l ocal e/ de/ LC_MESSAGES/ hel | 0. np"
Install file: "en.m" as "l ocal e/ en/ LC_MESSAGES/ hel | 0. nD"
nsgfnt -c -o pl.no pl.po

Install file: "pl.m" as "l ocal e/ pl/LC MESSAGES/ hel | 0. no"
scons: done buil ding targets.

SCons automatically compiled the POfilesto binary format MO, and thel nst al | As linesinstalled these files under

| ocal e folder.

Y our program should be now ready. Y ou may try it as follows (Linux):

Iy
=== SCONS

160

Simple project

user @ost : $ LANG=en_US. UTF-8 ./hello
VWl cone to beautiful world

user @ost:$ LANG=de DE. UTF-8 ./hell o
Hal | o Welt

user @ost:$ LANG=pl PL.UTF-8 ./hello
Wtaj swiecie

To demonstrate the further life of trandation files, let's change Polish trandation (poedit pl.po) to" Wt aj dr ogi
swi eci e\ n". Run sconsto see how scons reacts to this

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

msgfm -c -o pl.nm pl.po

Install file: "pl.m" as "l ocal e/ pl /LC MESSACES/ hel | 0. no"
scons: done buil ding targets.

Now, open hel | 0. ¢ and add another one pri nt f line with new message.

/* hello.c */

#i ncl ude <stdio. h>

#i nclude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext dormai n("hel | 0", "I ocal e");
setl ocal e(LC ALL, "");
t ext domai n(" hel | 0");
printf(gettext("Hello world\n"));
printf(gettext("and good bye\n"));
return O;

Compile project with scons. This time, the msgmer ge(1) program is used by SCons to update PO file. The output
from compilation islike:

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

Entering '/ hone/ptomnulik/projects/tnp'

xgettext --package-nanme=hello --package-version=1.0 -0 - hello.c

Iy
=== SCONS 161

Simple project

Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'
Witting 'nmessages.pot’' (nmessages in file were outdated)
nmsgner ge --update de.po nessages. pot
done.
msgfm -c -o de.np de. po
negner ge --update en. po nessages. pot
done.
msgfm -c -0 en.nb en. po
gcc -0 hello.o -c hello.c
gcc -0 hello hello.o
Install file: "de.m" as "l ocal e/ de/ LC_MESSAGES/ hel | 0. nD"
Install file: "en.m" as "l ocal e/ en/ LC_MESSAGES/ hel | 0. nD"
nmsgner ge --update pl.po nessages. pot
done.
msgfm -c -o pl.nm pl.po
Install file: "pl.m" as "l ocal e/ pl /LC_MESSACES/ hel | 0. no"
scons: done buil ding targets.

The next example demonstrates what happens if we change the source code in such way that the internationalized
messages do not change. The answer is that none of trandation files (POT, PO) are touched (i.e. no content changes,
no creation/modification time changed and so on). Let's append another line to the program (after the last printf), so
its code becomes:

/* hello.c */

#i ncl ude <stdio. h>

#i nclude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext domai n("hel |l 0", "l ocal e");
set| ocal e(LC ALL, "");
t ext domai n(" hel | 0");
printf(gettext("Hello world\n"));
printf(gettext("and good bye\n"));
printf("---------------- \n");
return a;

Compile the project. You'll see on your screen

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

Entering '/ hone/ptomnulik/projects/tnp'

xgettext --package-nanme=hello --package-version=1.0 -0 - hello.c
Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'

Not witting 'messages. pot' (nmessages in file found to be up-to-date)
gcc -0 hello.o -c hello.c

gcc -o hello hello.o

scons: done buil ding targets.

Iy
=== SCONS 162

Simple project

As you see, the internationalized messages didn't change, so the POT and the rest of tranglation files have not even
been touched.

Iy
=== SCONS 163

26 Miscellaneous

Functionality

SCons supports alot of additional functionality that doesn't readily fit into the other chapters.

26.1. Verifying the Python Version: the
Ensur ePyt honVer si on Function

Although the SCons code itself will run on any 3.x Python version (check the release notes for the precise minimum
supported release), you are free to make use of Python syntax and modules from later versions when writing your
SConscri pt filesor your own local modules. If you do this, it'susually helpful to configure SConsto exit gracefully
with an error messageif it'sbeing run with aversion of Python that simply won't work with your code. Thisisespecially
true if you're going to use SCons to build source code that you plan to distribute publicly, where you can't be sure of
the Python version that an anonymous remote user might use to try to build your software.

SCons provides an Ensur ePyt honVer si on function for this. You simply pass it the major and minor versions
numbers of the version of Python you require:

Ensur ePyt honVer si on(3, 8)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of Python:

% scons -Q
Python 3.7 or greater required, but you have Python 3.6.5

26.2. Verifying the SCons Version: the
Ensur eSConsVer si on Function

You may, of course, write your SConscr i pt filesto use features that were only added in recent versions of SCons.
When you publicly distribute software that is built using SCons, it's helpful to have SCons verify the version being

Accessing SCons Version: the Get SConsVer si on
Function

used and exit gracefully with an error message if the user's version of SCons won't work with your SConscr i pt
files. SCons provides an Ensur eSConsVer si on function that verifies the version of SCons in the same the
Ensur ePyt honVer si on function verifies the version of Python, by passing in the major and minor versions
numbers of the version of SCons you require:

Ensur eSConsVer si on(1, 0)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of SCons:

% scons -Q
SCons 1.0 or greater required, but you have SCons 0.98.5

26.3. Accessing SCons Version: the
Get SConsVer si on Function

While Ensur eSConsVer si on is acceptable for most cases, there are times where the user will want to support
multiple SCons versions simultaneously. In thisscenario, it's beneficial to retrieve version information of the currently
executing SCons directly. Thiswas previously only possible by accessing SCons internals. From SCons4.8 onwards,
it's now possible to instead call Get SConsVer si on to recieve a tuple containing the major, minor, and revision
values of the current version.

i f GetSConsVersion() >= (4, 9):
Some function got a new argunent in 4.9 that we want to take advantage of
SoneFunc(argl, arg2, arg3)

el se:
Can't use the extended syntax, but it doesn't warrant exiting prematurely
SoneFunc(argl, arg2)

26.4. Explicitly Terminating SCons While
Reading SConscri pt Files: the Exi t Function

SConssupportsan Exi t function which can be used to terminate SConswhilereading the SConscr i pt files, usually
because you've detected a condition under which it doesn't make sense to proceed:

i f ARGUMENTS. get (' FUTURE') :
print("The FUTURE option is not supported yet!")
Exit(2)

env = Environnent ()

env. Progran(' hello.c")

% scons - Q FUTURE=1
The FUTURE option is not supported yet!

Iy
=== SCONS 165

Searching for Files: the Fi ndFi | e Function

% scons -Q
cc -0 hello.o -c hello.c
cc -o hello hello.o

TheExi t functiontakesasan argument the (numeric) exit statusthat you want SConsto exit with. If you don't specify
avalue, the default isto exit with O, which indicates successful execution.

Note that the Exi t function is equivalent to calling the Python sys. exi t function (which it actually calls), but
because Exi t isa SCons function, you don't have to import the Python sys module to use it.

26.5. Searching for Files: the Fi ndFi | e
Function

The Fi ndFi | e function searches for afile in alist of directories. If there is only one directory, it can be given
as a simple string. The function returns a File node if a matching file exists, or None if no file is found. (See the
documentation for the d ob function for an aternative way of searching for entriesin adirectory.)

one directory
print("%"%indFile('mssing, '."))
t = FindFile('exists', ".")
print("% 9%"%t._ class_, t))

% scons -Q

None
<cl ass ' SCons. Node. FS. Fil e' > exi sts
scons: ~.' is up to date.

several directories
includes = ['.', "include', 'src/include']
headers = ['nonesuch.h', 'config.h', "private.h', "dist.h']
for hdr in headers:
print('%12s: %' % hdr, FindFile(hdr, includes)))

% scons -Q

nonesuch. h : None

config.h . config.h

private.h : src/include/private.h
dist.h : include/dist.h

scons: ~.' is up to date.

If the file exists in more than one directory, only the first occurrence is returned.

print(FindFile('multiple, ['subl', 'sub2', 'sub3']))
print(FindFile('multiple, ['sub2', 'sub3', 'subl']))
print(FindFile('multiple', ['sub3', 'subl', 'sub2']))

% scons -Q

Iy
=== SCONS 166

Handling Nested Lists: the Fl at t en Function

subl/ mul tiple
sub2/ mul tiple
sub3/mul tiple
scons: is up to date.

In addition to existing files, Fi ndFi | e will also find derived files (that is, non-leaf files) that haven't been built yet.
(Leaf files should already exist, or the build will fail!)

Neither file exists, so build will fail

Conmand(' derived', 'leaf',
print(FindFile('leaf',
print (FindFile('derived',

% scons -Q

| eaf

derived

cat > derived | eaf

Only 'leaf' exists
Conmand(' derived', 'leaf',
print(FindFile('leaf',
print (FindFile('derived',

% scons -Q

| eaf

deri ved

cat > derived | eaf

'cat >$TARGET $SOURCE')

"))

'cat >$TARGET $SOURCE')

"))

If asourcefileexists, Fi ndFi | e will correctly return the namein the build directory.

Only 'src/leaf' exists
VariantDir('build, 'src')

print(FindFile('leaf', "build))

% scons -Q
bui | d/ | eaf

scons: ' is up to date.

26.6. Handling Nested Lists: the Fl att en

Function

SCons supportsa Fl at t en function which takes an input Python sequence (list or tuple) and returns a flattened list
containing just the individual elements of the sequence. This can be handy when trying to examine alist composed of
the lists returned by calls to various Builders. For example, you might collect object files built in different ways into
one call to the Pr ogr amBuilder by just enclosing them in alist, asfollows:

Iy
=== SCONS

167

Handling Nested Lists: the Fl at t en Function

objects = |

oj ect (' progl.c'),

oj ect (" prog2.c', CCFLAGS='-DFQO),
]
Pr ogr an(obj ect s)

Because the Builder callsin SCons flatten their input lists, this works just fine to build the program:

% scons -Q

cc -0 progl.o -c progl.c

CC -0 prog2.0 -c -DFQO prog2.c
cc -0 progl progl.o prog2.o0

But if you were debugging your build and wanted to print the absolute path of each object file in the obj ect s list,
you might try the following simple approach, trying to print each Node'sabspat h attribute:

objects = |

Qbj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQQ),
]
Pr ogr an(obj ect s)

for object file in objects:
print(object file.abspath)

This does not work as expected because each call to st r is operating an embedded list returned by each Obj ect
call, not on the underlying Nodes within those lists:

% scons -Q
AttributeError: 'NodeList' object has no attribute 'abspath':
File "/homel/ ny/ project/SConstruct”, |ine 8:
print(object file.abspath)

The solution isto use the FI at t en function so that you can pass each Nodeto the st r separately:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQOO),
]
Pr ogr anm(obj ect s)

for object file in Flatten(objects):
print(object file.abspath)

% scons -Q

/ hone/ me/ proj ect/ progl. o

/ hone/ me/ pr oj ect/ prog2. o

ccC -0 progl.o -c progl.c

CC -0 prog2.o0 -c -DFQO prog2.c

Iy
=== SCONS 168

Finding the Invocation Directory: the Get LaunchDi r
Function

cC -0 progl progl.o prog2.o

26.7. Finding the Invocation Directory: the
Get LaunchDi r Function

If you need to find the directory from which the user invoked the scons command, you can use the Get LaunchDi r
function:

env = Environment (
LAUNCHDI R = Get LaunchDir (),
)
env. Command(' directory_build_info',
' $LAUNCHDI R/ bui | d_i nf o'
Copy (' $TARGET', ' $SOURCE'))

Because SCons is usually invoked from the top-level directory in which the SConst ruct file lives, the Python
os. get cwd() isoften equivalent. However, the SCons- u, - Uand - Dcommand-line options, when invoked from a
subdirectory, will cause SConsto changeto thedirectory inwhichthe SConst r uct fileisfound. When those options
are used, Get LaunchDi r will still return the path to the user's invoking subdirectory, allowing the SConscr i pt
configuration to still get at configuration (or other) files from the originating directory.

26.8. Declaring Additional Outputs: the
Si deEf f ect Function

Sometimes the way an action is defined causes effects on files that SCons does not recognize as targets. The
Si deEf f ect method can be used to informs SCons about such files. This can be used just to flag a dependency for
use in subsequent build steps, although there is usually a better way to do that. The primary use for the Si deEf f ect
method is to prevent two build steps from simultaneously modifying or accessing the same file in a way that could
impact each other.

In this example, the rule to build f i | el will also put datainto | og, which is used as a source for the command to
generatef i | e2, butl og isunknown to SConson aclean build: it neither existsnor isit atarget output by any builder.
The SConscri pt uses Si deEf f ect toinform SCons about the additional output file.

env = Environment ()
f2 = env. Conmand(
target="file2",
source='1o0g",
act i on=Copy (' $TARGET' , ' $SOURCE')
)
f1 = env. Comrand(
target="filel",
source=[],
action='echo >$TARCGET datal; echo >l og updated filel'

)
env. SideEffect('log', f1)

Iy
=== SCONS 169

Declaring Additional Outputs: the Si deEf f ect
Function

Without the Si deEf f ect , this build would fail with amessage Source "1 og' not found, needed by
target “file2',butnow itcan proceed:

% scons -Q
echo > filel datal; echo >l og updated filel
Copy("file2", "log")

However, it is better to actually identify | og asatarget, since in this case that'swhat it is:

env = Environnent ()
f2 = env. Comand(
target="file2",
source='1o0g",
acti on=Copy(' $TARGET', ' $SOURCE')

)

f1 = env. Comand(
target=['filel", 'log'],
source=[],

action='echo >$TARCET datal; echo >l og updated filel'

% scons -Q
echo > filel datal; echo >l og updated filel
Copy("file2", "log")

Ingeneral, Si deEf f ect isnot intended for the case when acommand produces extratarget files (that is, fileswhich
will be used as sourcesto other build steps). For example, the Microsoft Visual C++ compiler is capable of performing
incremental linking, for which it uses a status file - such that linking f 0o. exe also produces af 0o. i | k, or uses
it if it was aready present, if the / | NCREMENTAL option was supplied. Specifying f 0o. i | k as a side effect of
f 00. exe isnot arecommended use of Si deEf f ect sincef 00. i | k isused by the link. SCons handles side-effect
filesdlightly differently initsanalysis of the dependency graph. When acommand produces multiple output files, they
should be specified as multiple targets of the call to the relevant builder function. The Si deEf f ect function itself
should really only be used when it's important to ensure that commands are not executed in parallel, such as when a
"periphera" file (such as alog file) may actually be updated by more than one command invocation.

Unfortunately, the tool which sets up the Pr ogr ambuilder for the Microsoft Visual C++ compiler chain does not
come prebuilt with an understanding of the details of the . i | k example - that the target list would need to changein
the presence of that specific option flag. Unlike the trivial example above where we could simply tell the Cormand
builder there were two targets of the action, modifying the chain of events for a builder like Pr ogr am though not
inherently complex, is definitely an advanced SCons topic. It's okay to use Si deEf f ect hereto get started, aslong
as it comes with an understanding that it's "not quite right". Perhaps leave a comment in the file as a reminder, if it
does turn out to cause problems later.

So if the main use is to prevent parallelism problems, here is an example to illustrate. Say a program that you need
to call to build a target file will also update a log file describing what the program does while building the target.
The following configuration would have SCons invoke a hypothetical script named build (in the local directory) with
command-line arguments telling it to write log information to acommon | ogf i | e. t xt file:

env = Environment ()

env. Comand(
target="filel. out",
source="filel.in',

Iy
=== SCONS 170

Declaring Additional Outputs: the Si deEf f ect
Function

action="./build --log logfile.txt $SOURCE $TARGET'
)
env. Comand(

target="fil e2. out",

source="file2.in",

action="./build --log logfile.txt $SOURCE $TARGET'

This can cause problems when running the build in parallel if SCons decides to update both targets by running both
program invocations at the same time. The multiple program invocations may interfere with each other writing to the
common log file, leading at best to intermixed output in the log file, and at worst to an actual failed build (on a system
like Windows, for example, where only one process at atime can open the log file for writing).

We can make surethat SCons does not run these build commands at the sametime by usingthe Si deEf f ect function
to specify that updatingthel ogf i | e. t xt fileisasideeffect of building thespecifiedf i | el andfi | e2 targetfiles:

env = Environnent ()
f1 = env. Conmand(
target="filel. out',
source='filel.in",
action='"./build --log logfile.txt $SOURCE $TARGET
)
f2 = env. Conmand(
target="fil e2. out',
source="'file2.in",
action='"./build --log logfile.txt $SOURCE $TARGET

)
env. SideEffect('logfile.txt', f1 + f2)

This makes sure the two ./build steps are run sequentially, even with the - - j obs=2 in the command line:

% scons -Q --jobs=2
./build --log logfile.txt filel.in filel. out
./build --log logfile.txt file2.in file2. out

The Si deEf f ect function can be called multiple times for the same side-effect file. In fact, the name used as a
Si deEf f ect does not even need to actualy exist as a file on disk - SCons will still make sure that the relevant
targets will be executed sequentially, not in parallel. The side effect is actually a pseudo-target, and SCons mainly
cares whether nodes are listed as depending on it, not about its contents.

env = Environment ()

fl1 = env. Command('filel.out', [], action='echo >$TARCET datal')
env. Si deEf fect (' not _real ly_updated', f1)

f2 = env. Command('file2.out', [], action='echo >$TARCGET dat a2')
env. Si deEf fect (' not _real ly_updated', f2)

% scons -Q --jobs=2
echo > filel. out datal
echo > fil e2. out data2

Iy
=== SCONS 171

Using Python Virtual Environments

26.9. Using Python Virtual Environments

Python supports lightweight "virtual environments' (usually abbreviated virtualenv) which allow encapsulation /
isolation of package dependencies for a project. When a Python program is executed in the context of a virtualenv,
the paths for package imports are amended so the modules in the virtualenv are preferred. Depending on how the
virtualenv was configured, system paths may or may not be used as a fallback (the default is not).

SConsitself works as expected when executed within a virtualenv. However, there may be issuesif the project needs
to build using external commandswritten in Python which areinstalled in the virtualenv, or callsthe Python interpreter
to run a script. SCons launches command actions using a specia restricted PATH setting which the new process
uses to find executables. This path is part of the execution environment (see Section 7.3, “Controlling the Execution
Environment for Issued Commands”), and by default, does not contain any information about the virtualenv. Theresult
can be commands not found, or scripts executed with the system default copy of Python rather than the virtualenv
one, possibly causing incorrect imports. If you encounter this problem, SCons provides a mechanism to more fully
integrate with avirtualenv.

Usethe- - enabl e- vi rt ual env toimport virtualenv-related environment variables to the execution environment
($ENV) and to modify the execution environment's PATH appropriately to prefer the virtualenv executables and Python
interpreter.

To make this setting permanent, you can either:
» Add it to the SCONSFLAGS environment variable , or
* Set SCONS _ENABLE VI RTUALENV=1 in your environment.

SCONSFLAGS is the preferred approach, as it's easier to manage a single variable controlling SCons behavior than
multiples. If enabled by environment variable, the special virtualenv behavior can be disabled for the current run using
the--i gnore-vi rtual env option.

You can query the state at runtime by calling the Vi r t ual env global function. It returns a path to the virtualenv's
home directory, or an empty string if SConsis not running in avirtualenv.

Note

Vi r t ual env returns a path even if SCons is run from an unactivated virtualenv. A virtualenv does not
have to be activated to be used, you only need to use the path to its Python interpreter, but only an
activated virtualenv makes available the suitable PATH elements for SCons to copy in when - - enabl e-
vi rtual env isused.

Iy
=== SCONS 172

27 Using SCons with other
build tools

Sometimes a project needs to interact with other projects in various ways. For example, many open source projects
make use of components from other open source projects, and want to use thosein their released form, not rewritetheir
buildsinto SCons. Asanother example, sometimestheflexibility and power of SConsisuseful for managing the overall
project, but devel opers might like faster incremental builds when making small changes by using a different tool.

This chapter shows some techniques for interacting with other projects and tools effectively from within SCons.

27.1. Creating a Compilation Database

Tooling to perform analysis and modification of source code often needs to know not only the source code itself, but
also how it will be compiled, as the compilation line affects the behavior of macros, includes, etc. SCons has arecord
of thisinformation once it has run, in the form of Actions associated with the sources, and can emit this information
so tools can useit.

The Clang project has defined a JSON Compilation Database. Thisdatabaseisin common use asinput into Clang tools
and many IDEs and editors as well. See JSON Compilation Database Format Specification [https://clang.llvm.org/
docs/JISON CompilationDatabase.html] for completeinformation. SCons can emit acompilation databasein thisformat
by enabling the conpi | ati on_db tool and calling the Conpi | at i onDat abase builder (available since scons
4.0).

The compilation database can be popul ated with source and output files either with pathsrel ative to the top of the build,
or using absolute paths. Thisis controlled by COVPI LATI ONDB_USE_ABSPATH=(Tr ue| Fal se) which defaults
to Fal se. Theentriesin thisfile can befiltered by using COMPI LATI ONDB_PATH_FI LTER="' patt ern' where
thefilter pattern is a string following the Python f nmat ch [https://docs.python.org/3/library/fnmatch.html] syntax.
Thisfiltering can be used for outputting different build variants to different compilation database files.

The following example illustrates generating a compilation database containing absolute paths:
env = Environmnment (COVPI LATI ONDB_USE_ABSPATH=Tr ue)
env. Tool (' conpi |l ati on_db")

env. Conpi | ati onDat abase()
env. Progran(' hello.c")

% scons -Q

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/fnmatch.html

Creating a Compilation Database

Bui | di ng conpi |l ati on dat abase conpil e_comrands. j son
cc -0 hello.o -c hello.c
cc -0 hello hello.o

conpi | e_conmmands. j son contains:

{
"command": "gcc -o hello.o -c hello.c",
"directory": "/hone/user/sandbox",
“file": "/home/user/sandbox/hello.c",
"out put": "/hone/user/sandbox/ hell o. 0"
}

Notice that the generated database contains only an entry for the hel | 0. ¢/ hel | 0. o pairing, and nothing for the
generation of thefinal executable hel | o - thetransformation of hel | 0. o to hel | o does not have any information
that affects interpretation of the source code, so it is not interesting to the compilation database.

Although it can be alittle surprising at first glance, a compilation database target is, like any other target, subject to
scons target selection rules. This means if you set a default target (that does not include the compilation database),
or use command-line targets, it might not be selected for building. This can actually be an advantage, since you don't
necessarily want to regenerate the compilation database every build. The following example shows selecting relative
paths (the default) for output and source, and also giving a non-default name to the database. In order to be able to
generate the database separately from building, an aias is set referring to the database, which can then be used as a
target - here we are only building the compilation database target, not the code.

env = Environnent ()

env. Tool (' conpil ati on_db")

cdb = env. Conpi | ati onDat abase(' conpi | e_dat abase. j son')
Alias('cdb', cdb)

env. Progran('test_nain.c')

% scons -Q cdb
Bui | di ng conpil ati on dat abase conpil e_dat abase. j son

conpi | e_dat abase. j son contains:

{
"command": "gcc -o test _main.o -c test_mmin.c",
“directory": "/hone/user/sandbox",
“file": "test _main.c",
"output": "test_main.o"
}

Thefollowing (incomplete) example shows using filtering to separate build variants. In the case of using variants, you
want different compilation databases for each, since the build parameters differ, so the code analysis needs to see the

Iy
=== SCONS 174

Ninja Build Generator

correct build linesfor the 32-bit build and 64-bit build hinted at here. For simplicity of presentation, the example omits
the setup details of the variant directories:

env = Environment ()
env. Tool ("conpi |l ati on_db")

envl = env. Cl one()
env1[" COVP|I LATI ONDB PATH FILTER'] = "build/Ilinux32/*"
envl. Conpi | ati onDat abase(" conpi | e_conmands- | i nux32.j son")

env2 = env. Cl one()

env2[" COVPI LATI ONDB_PATH FILTER'] = "buil d/Ii nux64/*"
env2. Conpi | at i onDat abase(' conpi | e_conmands- | i nux64.j son')

conpi | e_commands- | i nux32. j son contains:

{
"command": "gcc -o hello.o -c hello.c",
"directory": "/hone/ mats/github/scons/exp/conpdb”,
“file": "hello.c",
"output": "hello.o"

}

conpi | e_commands- | i nux64. j son contains:

{
"command": "gcc -nB4 -0 build/linux64/test main.o -c test_main.c",
“directory": "/hone/user/sandbox",
“file": "test _main.c",
"out put": "build/linux64/test_main.o"
}

27.2. Ninja Build Generator

Note

Thisis an experimental new feature. It is subject to change and/or removal without a depreciation cycle.
Loading the ni nj a tool into SCons will make significant changesin SCons normal functioning.

» SCons will no longer execute any commands directly and will only create the bui | d. ni nj a and run
ninja

» Any targets specified on the command line will be passed along to ninja

Iy
=== SCONS 175

Ninja Build Generator

To enable this feature you'll need to use one of the following:

On the conmand |ine --experinental =ni nja

Or in your SConstruct
Set Option(' experinental', 'ninja')

Ninjaisasmall build system that triesto be fast by not making decisions. SCons can at times be slow because it makes
lots of decisions to carry out its goa of "correctness'. The two tools can be paired to benefit some build scenarios:
by using the ni nj a tool, SCons can generate the build file ninja uses (basically doing the decision-making ahead
of time and recording that for ninja), and can invoke ninja to perform a build. For situations where relationships are
not changing, such as edit/build/debug iterations, this works fine and should provide considerable speedups for more
complex builds. The implication is if there are larger changes taking place, ninjais not as appropriate - but you can
always use SCons to regenerate the build file. Y ou are NOT advised to use this for production builds.

To use the ni nj a tool you'll need to first install the Python ninja package, as the tool depends on being able to do
ani nport of the package. This can be donevia

In a virtual env, or "python" is the native executabl e:
python -mpip install ninja

W ndows usi ng Python | auncher:
py -mpip install ninja

Anaconda:
conda install -c conda-forge ninja

Reminder that like any non-default tool, you need to initialize it before use (e.g. env. Tool (' ni nja')).

It is not expected that the Ni nj a builder will work for all builds at this point. It is still under active development.
If you find that your build doesn't work with ninja please bring this to the users mailing list [https://pairlist4.pair.net/
mailman/listinfo/scons-users] or #scons- hel p [https://discord.gg/bXVpWAY] channel on our Discord server.

Specifically if your build has many (or even any) Python function actions you may find that the ninja build will be
dower as it will run ninja, which will then run SCons for each target created by a Python action. To alleviate some
of these, especialy those Python based actions built into SCons there is special logic to implement those actions via
shell commands in the ninja build file.

When ninjaruns the generated ninja build file, ninjawill launch scons as a daemon and feed commands to that scons
process which ninjais unable to build directly. This daemon will stay alive until explicitly killed, or it times out. The
timeout is set by $NI NJA_SCONS_DAEMON_KEEP_AL| VE.

The daemon will be restarted if any SConscr i pt file(s) change or the build changes in away that ninja determines
it needs to regenerate the build.ninjafile

See:

Ninja Build System [https://ninja-build.org/]
Ninja File Format Specification [https://ninja-build.org/manual .html#ref_ninja_file]

Iy
=== SCONS 176

https://pairlist4.pair.net/mailman/listinfo/scons-users
https://pairlist4.pair.net/mailman/listinfo/scons-users
https://pairlist4.pair.net/mailman/listinfo/scons-users
https://discord.gg/bXVpWAy
https://discord.gg/bXVpWAy
https://ninja-build.org/
https://ninja-build.org/
https://ninja-build.org/manual.html#ref_ninja_file
https://ninja-build.org/manual.html#ref_ninja_file

28 Troubleshooting

The experience of configuring any software build tool to build alarge code base usually, at some point, involvestrying
to figure out why thetool isbehaving acertain way, and how to get it to behave theway you want. SConsisno different.
This appendix contains anumber of different waysin which you can get some additional insight into SCons' behavior.

Note that we're always interested in trying to improve how you can troubleshoot configuration problems. If you run
into a problem that has you scratching your head, and which there just doesn't seem to be a good way to debug, odds
are pretty good that someone else will run into the same problem, too. If so, please let the SCons devel opment team
know using the contact information at https://scons.org/contact.html so that we can use your feedback to try to come
up with a better way to help you, and others, get the necessary insight into SCons behavior to help identify and fix
configuration issues.

28.1. Why is That Target Being Rebuilt? the - -
debug=expl ai n Option

Let'slook at asimple example of a misconfigured build that causes atarget to be rebuilt every time SConsis run:

Intentionally misspell the output file nane in the
comand used to create the file:
Command('file.out', "file.in', 'cp $SOURCE fil e.oout")

(Note to Windows users. The POSIX cp command copies the first file named on the command line to the second file.
In our example, it copiesthefil e. i nfiletothefil e. out file)

Now if we run SCons multiple times on this example, we see that it re-runs the cp command every time:

% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout

In this example, the underlying cause is obvious: we've intentionally misspelled the output file name in the cp
command, so the command doesn't actually build the fi | e. out file that we've told SCons to expect. But if the

https://scons.org/contact.html

Why is That Target Being Rebuilt? the - -
debug=expl ai n Option

problem weren't obvious, it would be hel pful to specify the - - debug=expl ai n option on the command lineto have
SConstell us very specifically why it's decided to rebuild the target:

% scons -Q --debug=expl ai n
scons: building file.out' because it doesn't exi st
cp file.in file.oout

If this had been a more complicated example involving alot of build output, having SCons tell us that it's trying to
rebuild the target file because it doesn't exist would be an important clue that something was wrong with the command
that we invoked to build it.

Notethat you can also use - - war n=t ar get - not - bui | t which checkswhether or not expected targets exist after
abuild rule is executed.

% scons -Q --warn=target-not-built
cp file.in file.oout

scons: warning: Cannot find target file.out after buil ding

File "/ Users/bdbaddog/ devel / scons/ git/as_scons/scripts/scons. py", line 97, in <modul e>

The - - debug=expl ai n option also comes in handy to help figure out what input file changed. Given a ssimple
configuration that builds a program from three source files, changing one of the source files and rebuilding with the
- - debug=expl ai n option shows very specifically why SCons rebuilds the files that it does:

% scons -Q

cc -ofilel.o -c filel.c

cc -ofile2.0 -c file2.c

cc -ofile3.0 -c file3.c

cc -o prog filel.o file2.0 file3.0

% [CHANGE THE CONTENTS OF fil e2.c]

% scons -Q --debug=expl ai n

scons: rebuilding "file2. o' because “file2.c' changed
cc -ofile2.0 -c file2.c

scons: rebuilding " prog' because “file2. 0" changed
cc -o prog filel.o file2.0 file3.0

Thisbecomes even more helpful in identifying when afileisrebuilt dueto achangein animplicit dependency, such as
anincluded. hfile. Ifthefi |l el. c andfi | e3. c filesin our examplebothincludedahel I o. h file, then changing
that included file and re-running SCons with the - - debug=expl ai n option will pinpoint that it's the change to the
included file that starts the chain of rebuilds:

% scons -Q

cc -o filel.o -c -1. filel.c
cc -o file2.o -c -1. file2.c
cc -o file3.o0 -c -1. file3.c

cc -o prog filel.o file2.0 file3.0

% [CHANGE THE CONTENTS OF hel | o. h]

% scons -Q --debug=expl ai n

scons: rebuilding "filel. o' because "hello.h' changed

cc -o filel.o -c -1. filel.c
scons: rebuilding "file3.0" because "hello.h' changed
cc -o file3.o -c -1. file3.c

scons: rebuilding “prog' because:
“filel. o' changed
“file3.0" changed

cc -o prog filel.o file2.0 file3.0

Iy
=== SCONS 178

What's in That Construction Environment? the Dunp
Method

(Notethat the- - debug=expl ai n option will only tell you why SCons decided to rebuild necessary targets. It does
not tell you what files it examined when deciding not to rebuild atarget file, which is often a more valuable question
to answer.)

28.2. What's in That Construction
Environment? the Dunp Method

When you create a construction environment, SCons populatesit with construction variablesthat are set up for various
compilers, linkersand utilitiesthat it finds on your system. Although thisisusually helpful and what you want, it might
befrustrating if SConsdoesn't set certain variablesthat you expect to be set. In situationslikethis, it's sometimes hel pful
to use the construction environment Dunp method to print all or some of the construction variables. Note that the
Dunp method returnsthe representation of the variablesin the environment for you to print (or otherwise manipul ate):

env = Envi ronnent ()
print (env. Dunp())

On aPOSIX system with gcc installed, this might generate:

% scons
scons: Readi ng SConscript files ...
{ "BULDERS : { ' Internallnstall': <function InstallBuil derWapper at 0x700000>,

" Internallnstall As': <function Install AsBuil der Wapper at 0x700000>,

' Internal I nstall VersionedLi b': <function |Install VersionedBuil der Wapper a
' CONFI GUREDI R : ' #/.sconf_tenp',
' CONFI GURELOG : ' #/ config.log',
" CPPSUFFI XES': ['.c',

. C,

. CXX",
. cpp’,

. C++'

.sSpp',
' SPP',
.sx'1,
"DSUFFI XES': ['.d'],
"Dir': <SCons.Defaults. Variable Method_Cal |l er object at 0x700000>,
"Dirs': <SCons.Defaults. Variable Method Caller object at 0x700000>,
"ENV' : {" PATH : '/usr/local/bin:/opt/bin:/bin:/usr/bin:/snap/bin'},
' ESCAPE' : <function escape at 0x700000>,

Iy
=== SCONS 179

What's in That Construction Environment? the Dunp
Method

Fi

| e': <SCons.Defaults. Variabl e Method_Cal | er object at 0x700000>,

' HOST_ARCH : 'arnb4',
"HOST_OS' : ' posi x',

| DLSUFFI XES': ['.idl"', '".IDL'],
I NSTALL' : <function copyFunc at 0x700000>,
| NSTALLVERSI ONEDLI B' : <function copyFuncVersi onedLi b at 0x700000>,

" LI BLI TERALPREFI X' : ' ",
"LIBPREFI X : "lib'",

" LI BPREFI XES' : [' $LIBPREFI X'],
"LIBSUFFI X" : '.a',

" LI BSUFFI XES' : [' $LI BSUFFI X', ' $SHLI BSUFFI X'],
" MAXLI NELENGTH : 128072,

' OBJPREFI X' : "',

"OBJSUFFI X' : '.0',

' PLATFORM : ' posi x',

' PROGPREFI X' @ ' ",

' PROGSUFFI X' @ ' ",

PSPAWN : <function piped_env_spawn at 0x700000>,

"RDirs': <SCons.Defaults. Variabl e Method_Cal | er object at 0x700000>,
' SCANNERS' : [<SCons. Scanner . Scanner Base obj ect at 0x700000>],

" SHELL': 'sh',
' SHLI BPREFI X' : ' $LI BPREFI X',
"SHLI BSUFFI X' : ' .so',

' SHOBJPREFI X' : ' $OBJPREFI X',

' SHOBJSUFFI X' : ' $OBJSUFFI X',

' SPAWN : <function subprocess_spawn at 0x700000>,

' TARGET_ARCH : None,

' TARGET_OS' : None,

' TEMPFI LE : <cl ass ' SCons. Pl at f orm TenpFi | eMinge' >,

' TEMPFI LEARGESCFUNC : <function quote_spaces at 0x700000>,
' TEMPFI LEARGJO N : ' ',

' TEMPFI LEPREFI X' : ' @),

"TOOLS : ['install'],

' _CPPDEFFLAGS : ' ${_defi nes(CPPDEFPREFI X, CPPDEFI NES, CPPDEFSUFFI X, __env__, '

' TARGET, SOURCE)}',

' _CPPI NCFLAGS : ' ${_concat (| NCPREFI X, CPPPATH, INCSUFFIX, __env__, RDirs, '

' TARGET, SOURCE, affect_signature=False)}",

' _LIBDI RFLAGS : ' ${_concat (LI BDI RPREFI X, LI BPATH, LIBDI RSUFFI X, _ _env__, '

"RDirs, TARCGET, SOURCE, affect_signature=Fal se)}"’,

' _LIBFLAGS : ' ${_concat (LI BLI NKPREFI X, LIBS, LIBLINKSUFFIX, __env_)}',

e
' d
'S

scons:
scons:
scons:
scons:

DRPATH : ' $_DRPATH ,

DSHLI BVERSI ONFLAGS' : ' ${__|i bversi onfl ags(__env__, "DSHLI BVERSI ON', " _DSHLI BVERSI ONFLAC
LDMODULEVERSI ONFLAGS' : ' ${__|i bversi onfl ags(__env__, " LDMODULEVERSI ON', " _LDMODULEVERSI
RPATH : ' $_RPATH ,

SHLI BVERSI ONFLAGS' : ' ${__|i bversionflags(__env__,"SHLI BVERSI ON', " _SHLI BVERSI ONFLAGS")
lib _either_version_ flag': <function __|lib_either _version flag at 0x700000>,

i bversionflags': <function __|ibversionflags at 0x700000>,

oncat': <function _concat at 0x700000>,

efines': <function _defines at 0x700000>,

tripixes': <function _stripixes at 0x700000>}

done readi ng SConscript files.

Bui |l ding targets ...

“.' is up to date.

done buil di ng targets.

~

=!=5CONS 180

What's in That Construction Environment? the Dunp
Method

On aWindows system with Microsoft Visual C++ the output might ook like:

C.\ >scons
scons: Readi ng SConscript files ...
{ "BULDERS : { 'Object': <SCons.Buil der. ConpositeBuil der object at 0x700000>,
" PCH : <SCons. Bui | der. Bui | der Base obj ect at 0x700000>,
'"RES : <SCons. Bui | der. Bui | der Base obj ect at 0x700000>,
' SharedObj ect' : <SCons. Bui | der. Conposi t eBui | der obj ect at 0x700000>,
"StaticObject': <SCons. Buil der. ConpositeBuil der object at 0x700000>,
" Internallnstall®: <function InstallBuil der Wapper at 0x700000>,
" Internallnstall As': <function Install AsBuil der Wapper at 0x700000>,
' Internal I nstall VersionedLi b': <function |Install VersionedBuil der Wapper
‘CC: ‘'cl",
' CCCOM : <SCons. Acti on. Functi onActi on object at 0x700000>,
' CCDEPFLAGS' : ' /showl ncl udes',
' CCFLAGS' : ['/nol ogo'],
' CCPCHFLAGS' : <function gen_ccpchfl ags at 0x700000>,
' CCPDBFLAGS' : ["${"/z7" if PDB else ""}'],
" CFI LESUFFI X : *.c',
' CFLAGS': [],
' CONFI GUREDI R : ' #/.sconf_tenp',
' CONFI GURELOG : ' #/ config.log',
' CPPDEFPREFI X' : '/ D,
' CPPDEFSUFFI X' @ "',
"CPPSUFFIXES' : ['.c',

: hppI 3
© PP

. Spp’,
‘. SPP',
.sx'1,
"CXX @ ' $CC ,
' CXXCOM : ' ${ TEMPFI LE(" $CXX $ MSVC OQUTPUT_FLAG /¢ $CHANGED SOURCES $CXXFLAGS '
' $CCFLAGS $_CCCOMCOM', " $CXXCOVSTR') } ',
" CXXFI LESUFFI X' : '.cc',
"CXXFLAGS': ["$(', "/TP', "$)'],
'"DSUFFI XES' : ['.d'],
"Dir': <SCons.Defaults. Variable Method_Cal |l er object at 0x700000>,
"Dirs': <SCons.Defaults. Variable Method Caller object at 0x700000>,
"ENV': { 'PATH : ' C \\ W NDOAB\\ Syst en32',
' PATHEXT' : ' . COM . EXE; . BAT; . C\MD

b4

SCONS 181

What's in That Construction Environment? the Dunp
Method

' SystenRoot': ' C:\\ W NDONE' },
' ESCAPE' : <function escape at 0x700000>,
"File': <SCons.Defaults. Variable Method Caller object at 0x700000>,
' HOST_ARCH : 'arnmb4',
'HOST_OS': 'wi n32',
| DLSUFFI XES': ['.idl", '".IDL'],
| NCPREFI X' : " /1",
| NCSUFFI X' @ "',
"INSTALL' : <function copyFunc at 0x700000>,
| NSTALLVERSI ONEDLI B' : <function copyFuncVersi onedLi b at 0x700000>,
LEXUNI STD : ['--nounistd'],
LI BLI TERALPREFI X' : "',

"LI BPREFI X" : "',
" LI BPREFI XES' : [' $LIBPREFI X'],
"LIBSUFFI X' : ".lib",

LI BSUFFI XES' : [' $LI BSUFFI X],

MAXLI NELENGTH : 2048,

MBVC_SETUP_RUN : True,

NI NJA_DEPFI LE_PARSE_FORMAT' : ' nsvc',

' OBJPREFI X : '',

' OBJSUFFI X : '.obj",

' PCHOOM : ' CXX / Fo{ TARGETS[1]} $CXXFLAGS $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS '
' $_CPPI NCFLAGS /¢ $SOURCES / YC$PCHSTOP / Fp${ TARGETS[0] }
' $CCPDBFLAGS $PCHPDBFLAGS' ,

PCHPDBFLAGS' : ['${"/Yd" if PDB else ""}'],

PLATFORM : ' wi n32',

' PROGPREFI X' : ' ",

' PROGSUFFI X' : ' . exe',

' PSPAWN : <function piped_spawn at 0x700000>,
"RC: 'rc',

' RCCOM : <SCons. Acti on. Functi onActi on object at 0x700000>,

"RCFLAGS : ['/nol ogo'],

RCSUFFI XES': ['.rc', '.rc2'],

"RDirs': <SCons.Defaults. Variabl e Method_Cal | er object at 0x700000>,

' SCANNERS' : [<SCons. Scanner . Scanner Base obj ect at 0x700000>],

'SHCC : ' $CC ,

' SHCCCOM : <SCons. Acti on. Functi onActi on object at 0x700000>,

' SHCCFLAGS' : [' $CCFLAGS'],

' SHCFLAGS' : [' $CFLAGS'],

" SHCXX' : ' $CXX'

' SHCXXCOM : ' ${ TEMPFI LE(" $SHCXX $_MSVC_OUTPUT_FLAG / ¢ $CHANGED_ SOURCES
' $SHCXXFLAGS $SHCCFLAGS $_CCCOMCOM', " $SHCXXCOMSTR') } ',

' SHCXXFLAGS' : [' $CXXFLAGS'],

"SHELL': ' command’,

" SHLI BPREFI X' @ "',

"SHLIBSUFFI X' : *.dlI",

' SHOBJPREFI X' : ' $OBJPREFI X',

' SHOBJSUFFI X' : ' $OBJSUFFI X',

' SPAWN : <function spawn at 0x700000>,

' STATI C_AND_SHARED OBJECTS ARE_THE SAME' : 1,

' TARGET_ARCH : None,

' TARGET_OS' : None,

' TEMPFI LE : <cl ass ' SCons. Pl at f orm TenpFi | eMuinge' >,

' TEMPFI LEARGESCFUNC : <function quote_spaces at 0x700000>,

Iy
=== SCONS 182

What's in That Construction Environment? the Dunp
Method

' TEMPFI LEARGJON : '\ n',
' TEMPFI LEPREFI X' : ' @),
"TOOLS : ['"msvc', 'install'],
' _CCCOMCOM : ' $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $CCPCHFLAGS $CCPDBFLAGS' ,
' _CPPDEFFLAGS : ' ${_defi nes(CPPDEFPREFI X, CPPDEFI NES, CPPDEFSUFFI X, __env__, '
' TARGET, SOURCE)}',
' _CPPI NCFLAGS : ' ${_concat (| NCPREFI X, CPPPATH, INCSUFFIX, __env__, RDirs, '
' TARGET, SOURCE, affect_signature=False)}",
' _LIBDI RFLAGS : ' ${_concat (LI BDI RPREFI X, LI BPATH, LIBDI RSUFFI X, _ env__, '
"RDirs, TARCGET, SOURCE, affect_signature=Fal se)}"’,
' _LIBFLAGS : ' ${_concat (LI BLI NKPREFI X, LIBS, LIBLINKSUFFIX, __env_)}"',
' _MBVC QUTPUT_FLAG : <function msvc_output flag at 0x700000>,
' __DSHLI BVERSI ONFLAGS' : '${__libversionflags(__env__, "DSHLI BVERSI ON', " _DSHLI BVERSI ONFLAC
' __LDMODULEVERSI ONFLAGS' : " ${__li bversionflags(__env__, " LDMODULEVERSI ON', " _LDMODULEVERSI
' __SHLIBVERSI ONFLAGS' : " ${__libversionflags(__env__, "SHLI BVERSI ON', " _SHLI BVERSI ONFLAGS")
' lib_ either_version flag': <function _|ib_either_version_flag at 0x700000>,
__libversionflags': <function __|ibversionflags at 0x700000>,
_concat': <function _concat at 0x700000>,
_defines': <function _defines at 0x700000>,
_stripixes': <function _stripixes at 0x700000>}
scons: done readi ng SConscript files.
scons: Building targets ...
scons: ' is up to date.
scons: done buil ding targets.

The construction environments in these examples have actually been restricted to just gcc and Microsoft Visual C++
respectively. Inareal-life situation, the construction environmentswill likely contain agreat many morevariables. Also
note that we've massaged the example output above to make the memory address of all objects a constant 0x700000.
In reality, you would see a different hexadecimal number for each object.

To makeit easier to seejust what you'reinterested in, the Dunp method allows you to specify a specific construction
variable that you want to display. For example, it's not unusual to want to verify the external environment used to
execute build commands, to make sure that the PATH and other environment variables are set up the way they should
be. Y ou can do this asfollows:

env = Environment ()
print(env. Dunp(' ENV'))

Which might display the following when executed on a POSI X system:

% scons

scons: Readi ng SConscript files ...

{"ENV' : {'PATH : '/usr/local/bin:/opt/bin:/bin:/usr/bin:/snap/bin'}}
scons: done readi ng SConscript files.

scons: Building targets ...

scons: ".' is up to date.

scons: done buil ding targets.

And the following when executed on a Windows system:

C.\ >scons
scons: Readi ng SConscript files ...
{ "ENV': { 'PATH : ' C\\ W NDOAB\\ Syst enB2: /usr/bin',

Iy
=== SCONS 183

What Dependencies Does SCons Know About? the - -
tree Option

' PATHEXT' : '.COM . EXE; . BAT; . C\MD
' SystenRoot': ' C:\\ W NDOAS' }}
scons: done readi ng SConscript files.
scons: Building targets ...
scons: ~.' is up to date.
scons: done buil ding targets.

28.3. What Dependencies Does SCons Know
About? the - -t ree Option

Sometimes the best way to try to figure out what SConsis doing is simply to take alook at the dependency graph that
it constructs based on your SConscr i pt files. The- -t r ee optionwill display all or part of the SCons dependency
graphinan"ASCII art" graphical format that shows the dependency hierarchy.

For example, given the following input SConst r uct file:

env = Environment (CPPPATH = ['."])
env. Program(' prog', ['fl.c', '"f2.¢c', '"f3.c'])

Running SConswiththe- -t r ee=al | optionyields:

% scons -Q --tree=all
cc -o fl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.¢c
cc -o f3.0 -c -1. f3.¢c
cc -o prog fl.o0 f2.0 f3.0
+- .

+- SConst r uct

+fl.c

=!=5CONS 184

What Dependencies Does SCons Know About? the - -
tree Option

The tree will also be printed when the - n (no execute) option is used, which allows you to examine the dependency
graph for a configuration without actually rebuilding anything in the tree.

By default, SCons uses "ASCI| art" to draw the tree. It is possible to use line-drawing characters (Unicode calls these
Box Drawing) to make anicer display. To do this, add thel i nedr aw qudifier:

% scons -Q --tree=all,linedraw
cc -ofl.o-c -1. fl.c
cc -o f2.o0-c -1. f2.c
cc -o f3.0 -c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
Hitt.
##SConst r uct
##f 1. c
###f 1. 0
##f 1. c
##inc. h
##f 2. c
###f 2. 0
##f 2. C
##inc. h
##f 3. c
###f 3. 0
##f 3. cC
##inc. h
##i nc. h
#H##pr og
###f 1. 0
##f 1. c
##inc. h
###f 2. 0
##f 2. C
##inc. h
###f 3. 0
##f 3. c
##i nc. h

The - - t r ee option only prints the dependency graph for the specified targets (or the default target(s) if none are
specified on the command line). So if you specify atarget likef 2. 0 on the command line, the - - t r ee option will
only print the dependency graph for that file:

% scons -Q --tree=all f2.0
cc -o f2.0-c -1. f2.c
+f2.0

+f2.¢c

+-inc.h

This is, of course, useful for restricting the output from a very large build configuration to just a portion in which
you're interested. Multiple targets are fine, in which case atree will be printed for each specified target:

% scons -Q --tree=all fl.0 f3.0
cc -ofl.o-c -1. fl.c
+fl.o

+fl.c

+-inc.h

Iy
=== SCONS 185

What Dependencies Does SCons Know About? the - -
tree Option

cc -o f3.0 -c -1. f3.¢c
+f3.0

+f3.c

+-inc.h

The st at us argument may be used to tell SConsto print status information about each file in the dependency graph:

% scons -Q --tree=status

cc -ofl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.c
cc -o f3.0-c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
E = exists
R = exists in repository only
b = inplicit builder
B = explicit builder
S = side effect
P = precious
A = al ways build
C = current
N = no clean
H = no cache
[ED] +-.
[E C] +-SConstruct
[E C] +fl.c
[EB C] +fl.o
[E C] | +fl.c
[E C] | +inc.h
[E C] +f2.c
[EB C] +f2.o0
[E C] | +f2c
[E C] | +inc.h
[E C] +f3.c
[EB C] +f3.0
[E C] | +f3.c
[E C] | +inc.h
[E C] +inc.h
[EB C] +-prog
[EB C] +fl.o
[E C] | +-fl.c
[E C] | +inc.h
[EB C] +-f2.0
[E C] | +-f2.¢c
[E C] | +inc.h
[EB C] +-f3.0
[E C] +-f3.c
[E C] +-inc.h

Notethat - -t ree=al | , st at us isequivaent; theal | isassumed if only st at us is present. As an aternative
toal I, you can specify - - t r ee=der i ved to have SCons only print derived targets in the tree output, skipping
sourcefiles (like. ¢ and. h files):

% scons -Q --tree=derived
cc -ofl.o-c -1. fl.c

Iy
=== SCONS 186

What Dependencies Does SCons Know About? the - -
tree Option

cc -o f2.0 -c -1. f2.¢c
cc -o f3.0 -c -1. f3.¢c
cc -o prog fl.o0 f2.0 f3.0
+- .
+f1l.0
+f2.0
+f3.0
+-prog
+f1l.0
+f2.0
+f3.0

You can usethe st at us modifier withder i ved aswell:

% scons -Q --tree=derived, st at us

cc -ofl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.c
cc -o f3.0 -c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
E = exists
R = exists in repository only
b = inmplicit builder
B = explicit builder
S = side effect
P = precious
A = al ways build
C = current
N = no clean
H = no cache
[EDb]+-.
[EB C] +-fl.o
[EB C] +-f2.0
[EB C] +-f3.0
[EB C] +-prog
[EB C] +fl.0
[EB C] +f2.0
[EB C] +f3.0

Note that the order of the - -t ree= arguments doesn't matter; - -t r ee=st at us, deri ved is completely
equivalent.

The default behavior of the - - t r ee option is to repeat al of the dependencies each time the library dependency
(or any other dependency file) is encountered in the tree. If certain target files share other target files, such as two
programs that use the same library:

env = Environnment (CPPPATH = ['."'],
LIBS = ['foo'],
LI BPATH = ['."])
env. Library('foo', ['fl.c', 'f2.¢', 'f3.¢c'])
env. Progran(' progl.c')
env. Progran(' prog2.c')

Then there can be alot of repetition in the - - t r ee= outpuit:

Iy
=== SCONS 187

What Dependencies Does SCons Know About? the - -
tree Option

% scons -Q --tree=al

cc -o fl.o -c -I. fl.c
cc -o f2.0 -c -I. f2.c
cc -o f3.0 -c -I. f3.c

ar rc libfoo.a fl.0 f2.0 f3.0
ranlib |ibfoo.a
cc -0 progl.o -c -I. progl.c
cc -o progl progl.o -L. -Ifoo
CC -0 prog2.0 -c -1. prog2.c
CC -0 prog2 prog2.o0 -L. -Ifoo
+-.

+- SConst r uct

+-fl.c

-p

-p

+- progl (o
+-inc.h
-p

-‘-' SCONS 188

What Dependencies Does SCons Know About? the - -

tree Option

In alarge configuration with many internal libraries and include files, this can very quickly lead to huge output trees.
To help make this more manageable, a pr une modifier may be added to the option list, in which case SCons will
print the name of atarget that has already been visited during the tree-printing in square brackets ([]) asan indication

that the dependencies of the target file may be found by looking farther up the tree:

% scons -Q --tree=prune

cc -o fl.o -c -1I.
cc -o f2.0 -c -1I.
cc -o f3.0 -c -1I.

ar

ranlib |ibfoo.a

fl.c
f2.c
f3.c

rc libfoo.a fl.0 f2.0 f3.0

cc -0 progl.o -c -I. progl.c
cc -o progl progl.o -L. -Ifoo
CC -0 prog2.0 -c -l1. prog2.c
CC -0 prog2 prog2.o0 -L. -Ifoo

+- SConst r uct
+-fl.c
+-fl.0

3.0

189

How is SCons Constructing the Command Lines It
Executes? the - - debug=pr esub Option

Likethe st at us keyword, the pr une argument by itself isequivalentto- -t ree=al | , pr une.

28.4. How is SCons Constructing the
Command Lines It Executes? the - -
debug=pr esub Option

Sometimesthe command linesthat SCons executes don't come out looking asyou expect. Inthiscaseit may beuseful to
look at the strings before SCons performs substitution on them. This can be donewith the- - debug=pr esub option:

% scons -Q --debug=presub
Bui |l di ng prog.o with action:
$CC -0 $TARGET -c $CFLAGS $CCFLAGS $_CCOMCOM $SOURCES
CC -0 prog.o -c -1. prog.c
Bui |l di ng prog with action:
$SMART LI NKCOM
CC -0 prog prog.o

28.5. Where is SCons Searching for Libraries?
the - - debug=fi ndl i bs Option

To get some insight into what library names SCons is searching for, and in which directories it is searching, use the
- -debug=fi ndl i bs option. Given the following input SConst r uct file:

env = Environnment (LI BPATH = ['libsl', 'libs2'])
env. Progran(' prog.c', LIBS=['foo', '"bar'])

Andthelibraries| i bf oo. aandl i bbar. ainli bslandli bs2,respectively, useof the- - debug=fi ndl i bs
option yields:

% scons -Q --debug=findlibs

findlibs: |looking for 'libfoo.a" in 'libsl
findlibs: ... FOUND 'libfoo.a" in 'libsl
findlibs: |ooking for 'libfoo.so" in 'libsl
findlibs: |looking for 'libfoo.so" in 'libs2
S

=!=5CONS 190

Whereis SCons Blowing Up?the - -
debug=st acktrace Option

findlibs: |looking for 'libbar.a" in 'libsl
findlibs: |looking for 'libbar.a" in 'libs2

findlibs: ... FOUND 'libbar.a" in 'libs2
findlibs: |ooking for 'libbar.so" in 'libsl
findlibs: |ooking for 'libbar.so" in 'libs2

CC -0 prog.o -c prog.c
CC -0 prog prog.o -LIibsl -LIibs2 -1foo -I bar

28.6. Where is SCons Blowing Up? the - -
debug=st ackt r ace Option

Ingeneral, SConstriesto keepitserror messages short and informative. That meansweusually try to avoid showing the
stack traces that are familiar to experienced Python programmers, since they usually contain much more information
than is useful to most people.

For example, the following SConst r uct file:

Program(' prog.c')

Generates the following error if the pr og. ¢ file does not exist:

% scons -Q
scons: *** [prog.o] Source "prog.c' not found, needed by target " prog.o'.

Inthis case, the error is pretty obvious. But if it weren't, and you wanted to try to get more information about the error,
the - - debug=st ackt r ace option would show you exactly where in the SCons source code the problem occurs:

% scons -Q --debug=st acktrace
scons: *** [prog.o] Source "prog.c' not found, needed by target " prog.o'.
scons: internal stack trace:

Fil e "SCons/ Taskmast er/ Job. py", line 670, in _work
t ask. prepare()
File "SCons/ Script/Min.py", line 209, in prepare

return SCons. Taskmast er. Qut Of Dat eTask. prepar e(sel f)

NNNNNANNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

File "SCons/ Taskmaster/ _init__.py", line 195, in prepare
execut or. prepare()
Fil e "SCons/ Executor.py", line 424, in prepare

rai se SCons. Errors. StopError(nmsg % (s, self.batches[0].targets[0]))

Of course, if you do need to dive into the SCons source code, we'd like to know if, or how, the error messages or
troubleshooting options could have been improved to avoid that. Not everyone has the necessary time or Python skill
to diveinto the source code, and we'd like to improve SCons for those people as well...

28.7. How is SCons Making Its Decisions? the
--taskmast ertrace Option

The internal SCons subsystem that handles walking the dependency graph and controls the decision-making about
what to rebuild is the Taskmaster. SCons supports a - -t asknast ert r ace option that tells the Taskmaster to
print information about the children (dependencies) of the various Nodes on its walk down the graph, which specific
dependent Nodes are being evaluated, and in what order.

Iy
=== SCONS 191

How is SCons Making Its Decisions? the - -
taskmast ertrace Option

The- -t askmast ert r ace option takes as an argument the name of afile in which to put the trace output, with -
(asingle hyphen) indicating that the trace messages should be printed to the standard output:

env = Environment (CPPPATH = ['."])
env. Progran(' prog.c')

% scons -Q --taskmastertrace=-
Job. NewPar al | el . _work():
Job. NewPar al | el . _work():
Job. NewPar al | el . _work():
Job. NewPar al | el . _work():

Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :

Task. make ready_current ():
Task. prepare():
Job. NewPar al | el . _work():
Task. executed_wi t h_cal | backs() :
Task. post process():
Task. post process():
Task. post process():
Job. NewPar al | el . _work():

Tasknast er :
Tasknast er :
Tasknast er :

Task. make _ready_current ():
Task. prepare():
Job. NewPar al | el . _work():

Task. post process():
Task. post process():
Task. post process():

pr og

[Thr ead: 8314855936]
[Thr ead: 8314855936]
[Thr ead: 8314855936]
[Thr ead: 8314855936]

Gai ned excl usi ve access

Starting search

Found O conpl eted tasks to process
Searchi ng for new tasks

Looki ng for a node to eval uate
Consi deri ng node <no_state 0
<no_state 0 ' prog. o' >
adjusted ref count: <pending 1
Consi deri ng node <no_state 0
<no_state 0 ' prog.c' >
<no_state 0 "“inc.h >
adjusted ref count: <pending 1 ‘prog.o' >, child 'prog.c
adj usted ref count: <pending 2 "prog.o' >, child '"inc.h'
Consi deri ng node <no_state 0 "prog.c'> and its children

"prog' > and its children

‘prog' >, child '"prog.o
"prog.o' > and its children

Eval uati ng <pendi ng 0 'prog.c' >
node <pendi ng 0 'prog.c' >
node <up_to_date 0O 'prog.c' >

[Thr ead: 8314855936] Found i nternal task

node <up_to_date 0O 'prog.c' >

node <up_to_date 0O 'prog.c' >

renovi ng <up_to_date O 'prog.c' >

adj usted parent ref count <pendi ng 1 ' prog. o' >
[Thr ead: 8314855936] Searchi ng for new tasks

Looki ng for a node to eval uate

Consi deri ng node <no_state 0 ‘inc.h'> and its children

Eval uati ng <pendi ng 0 "“inc.h >
node <pendi ng 0 "“inc.h >
node <up_to_date 0O "“inc.h >

[Thr ead: 8314855936] Found i nternal task
Task. executed_wi th_cal | backs(): node <up_to_date O "“inc.h >
node <up_to_date 0O "“inc.h >
renovi ng <up_to_date O "“inc.h >
adj usted parent ref count <pendi ng 0 ' prog. o' >
[Thr ead: 8314855936] Searchi ng for new tasks

Job. NewPar al | el . _work():

Taskmast er: Looking for a node to eval uate
Taskmast er : Consi deri ng node <pendi ng 0 ‘prog.o' > and its children
Taskmast er : <up_to_date O 'prog.c' >
Taskmast er: <up_to_date O "“inc.h >
Taskmast er: Eval uating <pendi ng 0 ' prog. o' >
N
='=25CoNs 192

Watch SCons prepare targets for building: the - -
debug=pr epar e Option

Task. make _ready_current(): node <pendi ng 0 'prog. o' >

Task. prepare(): node <executing O 'prog. o' >

Job. NewPar al I el . _work(): [Thread: 8314855936] Found task requiring execution
Job. NewPar al | el . _work(): [Thread: 8314855936] Executing task

Task. execute() : node <executing O 'prog. o' >

CC -0 prog.o -c -1. prog.c

Job. NewPar al I el . _work(): [Thread: 8314855936] Enqueuei ng executed task results
Job. NewPar al | el . _work(): [Thread: 8314855936] Gai ned excl usi ve access

Job. NewPar al | el . _work(): [Thread: 8314855936] Starting search

Job. NewPar al | el . _work(): [Thread: 8314855936] Found 1 conpl eted tasks to process

Task. executed_wi th_cal | backs(): node <executing O ' prog. o' >

Task. post process(): node <execut ed 0 'prog. o' >

Task. post process(): renovi ng <executed 0 ' prog. o' >

Task. post process(): adjusted parent ref count <pendi ng 0 'prog' >

Job. NewPar al | el . _work(): [Thread: 8314855936] Searchi ng for new tasks

Taskmast er: Looking for a node to eval uate

Taskmast er : Consi deri ng node <pendi ng 0 "prog' > and its children
Taskmast er : <execut ed 0 'prog. o' >

Taskmast er: Eval uating <pendi ng 0 ' prog' >

Task. make _ready_current(): node <pendi ng 0 ' prog' >

Task. prepare(): node <executing O ' prog' >

Job. NewPar al | el . _work(): [Thread: 8314855936] Found task requiring execution
Job. NewPar al | el . _work(): [Thread: 8314855936] Executing task

Task. execute() : node <executing O ' prog' >

CC -0 prog prog.o

Job. NewPar al I el . _work(): [Thread: 8314855936] Enqueuei ng executed task results
Job. NewPar al | el . _work(): [Thread: 8314855936] Gai ned excl usi ve access

Job. NewPar al I el . _work(): [Thread: 8314855936] Starting search

Job. NewPar al | el . _work(): [Thread: 8314855936] Found 1 conpl eted tasks to process
Task. executed_wi th_cal | backs(): node <executing O 'prog' >

Task. post process(): node <execut ed 0 ' prog' >

Job. NewPar al | el . _work(): [Thread: 8314855936] Searchi ng for new tasks

Taskmast er: Looking for a node to eval uate

Taskmast er: No candi dat e anynore

Job. NewPar al | el . _work(): [Thread: 8314855936] Found no task requiring execution, and have n
Job. NewPar al | el . _work(): [Thread: 8314855936] Gai ned excl usi ve access

Job. NewPar al | el . _work(): [Thread: 8314855936] Conpl eti on detected, breaking from main | oop

The - -t askmast er t r ace option doesn't provide information about the actual calculations involved in deciding
if afileis up-to-date, but it does show all of the dependencies it knows about for each Node, and the order in which
those dependencies are evaluated. This can be useful as an aternate way to determine whether or not your SCons
configuration, or the implicit dependency scan, has actually identified all the correct dependencies you want it to.

28.8. Watch SCons prepare targets for
building: the - - debug=pr epar e Option
Sometimes SCons doesn't build the target you want, and it's difficult to figure out why. You can use the - -

debug=pr epar e option to see all the targets SCons is considering, and whether they are already up-to-date or not.
The message is printed before SCons decides whether to build the target.

Iy
=== SCONS 193

Why is afile disappearing? the - - debug=dupl i cat e
Option

28.9. Why is afile disappearing? the - -
debug=dupl i cat e Option

When using the Dupl i cat e option to create variant directories, sometimes you may find files not getting linked
or copied to where you expect (or not at all), or files mysteriously disappearing. These are usualy because of a
misconfiguration of some kind in the SConscript files, but they can be tricky to debug. The - - debug=dupl i cat e
option shows each time avariant file is unlinked and relinked from its source (or copied, depending on settings), and
also shows a message for removing "stal€" variant-directory files that no longer have a corresponding source file. It
also printsalinefor each target that's removed just before building, since that can also be mistaken for the same thing.

28.10. Keep it simple

Over the years, many developers have chosen to dive in and make vastly complicated build systems out of SCons,
which sometimes don't work quite as expected. As a general rule, make sure you need to reach for acomplex solution
before you do so. SConsis mature software and has evolved over timeto meet alot of feature requests, so thereis often
an easier way to do somethingif you canjust find it. The SCons community can be hel pful here- thediscussion listsand
chat channels can be away to find out if something can be done an easier way before embarking on an implementation.

When something does mishehave, trying to isolate the problem to asimpletest case can really help. The work to create
areproducer often helps you spot the issue yourself, and a simple example is much easier for others to look over and
possibly spot logical flaws, misuse of the API, or other ways something could have been done. In addition, if it turns
out there's actually areal SCons bug (we believeit'sahigh quality piece of software, but all software has some bugs),
it'svery likely the bug filing will result in arequest for a simple reproducer anyway.

Iy
=== SCONS 194

Appendix A. Construction Variables

This appendix contains descriptions of all of the construction variables that are potentially available "out of the box"
in this version of SCons. Whether or not setting a construction variable in a construction environment will actually
have an effect depends on whether any of the Tools and/or Builders that use the variable have been included in the
construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name when it appears
in the text, but left off the dollar sign in the left-hand column where the name appears for each entry.

___LDMODULEVERSI ONFLAGS
This construction variable automatically introduces $_ L DMODUL EVERSI ONFLAGS if $LDMODULEVERSI ON
is set. Otherwise, it evaluates to an empty string.

__SHLI BVERSI ONFLAGS

This construction variable automatically introduces $_SHLI BVERSI ONFLAGS if $SHLI BVERSI ON is set.
Otherwise, it evaluates to an empty string.

APPLEL| NK_COWVPATI BI LI TY_VERSI ON
On Mac OS X thisis used to set the linker flag: -compatibility_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLI BVERSI ON if not specified. The
lowest digit will be dropped and replaced by a 0.

If the SAPPLELI NK_NO_COWPATI BI LI TY_VERSI ONis set then no -compatibility_version will be outpuit.
See MacOS's |d manpage for more details

_APPLELI NK_COWPATI BI LI TY_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELI NK_COWPATI Bl LI TY_VERSI ON and
$APPLELI NK_NO COVPATI BI LI TY_VERSI ONand $SHLI BVERSI ON to determine the correct flag.

APPLEL| NK_CURRENT_VERSI ON
On Mac OS X thisisused to set the linker flag: -current_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be set to $SHLI BVERSI ONif not specified.

If the SAPPLELI NK_NO_CURRENT_VERSI ONis set then no -current_version will be output.
See MacOS's |d manpage for more details

_APPLELI NK_CURRENT_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELI NK_CURRENT_VERSI ON and
$APPLEL| NK_NO_CURRENT_VERS| ONand $SHLI BVERSI ON to determine the correct flag.

APPLELI NK_NO_COWVPATI BI LI TY_VERSI ON
Set thisto any True (1|Truelnon-empty string) val ueto disable adding -compatibility version flag when generating
versioned shared libraries.

This overrides SAPPLEL| NK_COMPATI BI LI TY_VERSI ON.

Iy
=== SCONS 195

APPLELI NK_NO_CURRENT_VERSI ON
Set this to any True (1|Truelnon-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides SAPPLEL| NK_CURRENT_VERS| ON.

AR
The static library archiver.

ARCHI TECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SConsisrunning. Thisisused tofill inthe Ar chi t ect ur e: fieldinanlIpkgcontr ol
file, and the Bui | dAr ch: field in the RPM . spec file, as well as forming part of the name of a generated
RPM packagefile.

Seethe Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOVETR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environnment (ARCOVSTR = "Archivi ng $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOVSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not set,
then $ASCOM (the command line) is displayed.

env = Environnment (ASCOMSTR = "Assenbl i ng $TARCGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assembl e an assembly-language sourcefileinto an object file after first running thefile
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
areincluded on this command line.

ASPPCOVSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If thisis not set, then $ASPPCOM (the command line) is displayed.

Iy
=== SCONS 196

env = Environnment (ASPPCOVSTR = "Assenbl i ng $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

Bl BTEX
Thebibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

Bl BTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

Bl BTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If thisis not set, then $Bl BTEXCOM
(the command line) is displayed.

env = Environnent (Bl BTEXCOVBTR = "CGenerating bi bl i ography $TARGET")

Bl BTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUI LDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program Li brary etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUI LDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUI LDERS will override any defaults:

bl d
env

Bui | der (acti on=' foobuild < $SOURCE > $TARGET')
Envi ronment (BUl LDERS={' NewBui | der': bl d})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment ()
env. Append(BUl LDERS={' NewBui | der': bl d})

or this:

env = Environnent ()
env[' BU LDERS][' NewBuil der'] = bld

CACHEDI R_CLASS
The classtypethat SCons should use when instantiating anew CacheDi r inthisconstruction environment. Must
be a subclass of the SCons. CacheDi r. CacheDi r class.

CcC
The C compiler.

Iy
=== SCONS 197

CCccom
The command line used to compile a C sourcefile to a(static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOVBTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See a'so $SHCCCOMSTR for compiling to shared objects.

env = Environnent (CCCOVBTR = "Conpi |l i ng static object $TARGET")

CCDEPFLAGS
Optionsto passto C or C++ compiler to generate list of dependency files.

Thisis set only by compilers which support this functionality. (gcc, cl ang, and nsvc currently)

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variableis set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

The Microsoft Visual C++ compiler option that SCons uses by default to generate PDB informationis/ Z7. This
works correctly with paralldl (- j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is aso the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although parallel builds will no longer work.

Y ou can generate PDB fileswith the/ Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%" % File(PDB)) or ""}']

An dternative would be to usethe/ Zi to put the debugging information in a separate . pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS' | = '/Zi /Fd${TARGET}. pdb'

CCVERSI ON
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFl LESUFFI X
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.I)
or YACC (.y) input files. The default suffix, of course, is. ¢ (lower case). On case-insensitive systems (like
Windows), SCons also treats. C (upper case) filesas C files.

Iy
=== SCONS 198

CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

CHANGE_SPECFI LE
A hook for modifying the file that controls the packaging build (the . spec for RPM, thecont r ol for Ipkg, the
. wxs for MSl). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANCED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution" for more information).

CHANGED TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGEL GG
The name of a file containing the change log text to be included in the package. This is included as the
% hangel og section of the RPM . spec file.

See the Package builder.

COVPI LATI ONDB_COMSTR
The string displayed when the Conpi | at i onDat abase builder's actionisrun.

COVPI LATI ONDB_PATH_FI LTER
A string which instructs Conpi | at i onDat abase to only include entrieswherethe out put member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string ", which disables filtering.

COWVPI LATI ONDB_USE_ABSPATH
A boolean flag to instruct Conpi | at i onDat abase whether to writethef i | e and out put membersin the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

concat

A function used to produce variables like $_CPPI NCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) alist of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optional af f ect _si gnat ur e flag which will wrap non-
empty returned value with $(and $) to indicate the contents should not affect the signature of the generated
command line.

env[' CPPI NCFLAGS'] = '${ concat (| NCPREFI X, CPPPATH, |INCSUFFI X, env__, RDirs,

CONFI GUREDI R
The name of the directory in which Configure context test files are written. The defaultis. sconf _t enp inthe
top-level directory containing the SConst r uct file.

Iy
=== SCONS 199

If variant directories are in use, and the configure check results should not be shared between variants, you can
set $CONFI GUREDI R and $CONFI GUREL OG so they are unique per variant directory.

CONFI GURELOG
The name of the Conf i gur e context log file. Thedefaultisconfi g. | og inthetop-level directory containing
the SConst r uct file.

If variant directories are in use, and the configure check results should not be shared between variants, you can
set $CONFI GUREDI R and $CONFI GUREL OG so they are unique per variant directory.

_ CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. Thevalueof $ CPPDEFFLAGS iscreated by respectively prepending and appending $CPPDEFPREFI X
and $CPPDEFSUFFI X to each definition in $CPPDEFI NES.

CPPDEFI NES
A platform independent specification of C preprocessor macro definitions. The definitions are added to command
lines through the automatically-generated $_CPPDEFFLAGS construction variable, which is constructed
according to the contents of $CPPDEFI NES:

» If $CPPDEFI NES is a string, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variables are respectively prepended and appended to each definition in $CPPDEFI NES, split on whitespace.

Adds -Dxyz to PCSI X conpil er command |i nes,
and /Dxyz to Mcrosoft Visual C++ command |i nes.
env = Envi r onnment (CPPDEFI NES=' xyz')

 |If $CPPDEFI NESisalist, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
are respectively prepended and appended to each element in the list. If any element is a tuple (or list) then
the first item of the tuple is the macro name and the second is the macro definition. If the definition is not
omitted or None, the name and definition are combined into a single nane=def i ni ti on item before the

prepending/appending.

Adds -DB=2 -DA to POSI X conpil er command | i nes,
and /DB=2 /DA to Mcrosoft Visual C++ command |i nes.
env = Environnment (CPPDEFINES=[(' B, 2), 'A'])

* |f $CPPDEFI NES is a dictionary, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variables are respectively prepended and appended to each key from the dictionary. If the value for a key
is not None, then the key (macro name) and the value (macros definition) are combined into a single
nane=def i ni ti on item before the prepending/appending.

Adds -DA -DB=2 to POSI X conpil er command | i nes,
or /DA /DB=2 to Mcrosoft Visual C++ command |i nes.
env = Envi ronnent (CPPDEFI NES={' B' : 2, ' A" : None})

Depending on how contents are added to $CPPDEFI NES, it may be transformed into a compound type, for
example alist containing strings, tuples and/or dictionaries. SCons can correctly expand such a compound type.

Note that SCons may call the compiler viaa shell. If a macro definition contains characters such as spaces that
have meaning to the shell, or is intended to be a string value, you may need to use the shell's quoting syntax to
avoid interpretation by the shell before the preprocessor sees it. Function-like macros are not supported via this
mechanism (and some compilers do not even implement that functionality viathe command lines). When quoting,

Iy
=== SCONS 200

note that one set of quote characters are used to define a Python string, then quotes embedded inside that would
be consumed by the shell unless escaped. These examples may help illustrate:

env
env

Envi ronnent (CPPDEFI NES=[' USE_ALT HEADER=\\"foo_alt.h\\"'

1)
Envi ronnent (CPPDEFI NES=[(' USE_ALT HEADER , '\\"foo_alt.h\\

"))

:Changed in version 4.5: SCons no longer sorts $CPPDEFI NES values entered in dictionary form. Python now
preserves dictionary keysin the order they are entered, so it is no longer necessary to sort them to ensure a stable
command line.

CPPDEFPREFI X

The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable
isautomatically generated.

CPPDEFSUFFI X

The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFI NES construction variable when the $ CPPDEFFLAGS variable
isautomatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM $SHCCCOM $CXXCOM and
$SHCXXCOM command lines, but also the $FORTRANPPCOM $SHFORTRANPPCOM $F77PPCOM and
$SHF77PPCOMcommand lines used to compile a Fortran source file, and the $ASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
thisvariable does not contain - | (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_ CPPI NCFLAGS, below, for the variable that expands to those options.

_CPPI NCFLAGS

An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for includefiles. The value of $_CPPI NCFLAGS is created by respectively
prepending and appending $I NCPREFI X and $1 NCSUFFI X to each directory in $CPPPATH.

CPPPATH

Thelist of directoriesthat the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directoriesfor includefiles. In generd, it's not advised to put include directory directives
directly into $CCFLAGS or $CXXFLAGS asthe result will be non-portable and the directorieswill not be searched
by the dependency scanner. $CPPPATH should be alist of path strings, or a single string, not a pathname list
joined by Python's 0s. pat hsep.

Note: directory names in $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used in acommand. To force sconsto lookup adirectory relativeto the root of the sourcetree, usethe# prefix:

env = Environment (CPPPATH=" #/ i ncl ude')

The directory lookup can also be forced using the Di r function:
include = Dir('include')

env = Environment (CPPPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $ CPPI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

~

'—‘—' SCONS 201

$I NCPREFI X and $1 NCSUFFI X construction variables to each directory in $CPPPATH. Any command lines
you define that need the $CPPPATH directory list should include $_CPPI NCFLAGS:

env = Environnent (CCCOVE"ny_conpi | er $_CPPI NCFLAGS -c -0 $TARGET $SOURCE")

CPPSUFFI XES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default listis:

[".c", ".C', ".cxx", ".cpp", ".c++", ".cc",
“.h", " H', ".hxx", ".hpp", ".hh",
" F, ".fpp", ".FPP",
".S", ".spp", ".SPP"]
CXX

The C++ compiler. See also $SHCXX for compiling to shared objects.

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOMfor compiling
to shared objects.

CXXCOVBTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See aso $SHCXXCOMSTR for compiling to shared objects.

env = Environnment (CXXCOVSTR = "Conpiling static object $TARGET")

CXXFI LESUFFI X
The suffix for C++ sourcefiles. Thisisused by theinternal CXXFile builder when generating C++ files from Lex
(I or YACC (.yy) input files. The default suffix is. cc. SCons also treats files with the suffixes. cpp, . cxX,
. c++, and . C++ as C++ files, and files with . mmsuffixes as Objective-C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats . C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects.

CXXVERSI ON
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM
The command line used to compile aD file to an object file. Any options specified in the $DFLAGS construction
variable isincluded on this command line. See also $SHDCOMfor compiling to shared objects.

DCOVSTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See aso $SHDCOMSTR for compiling to shared objects.

Iy
=== SCONS 202

DDEBUG
List of debug tags to enable when compiling.

DDEBUGPREFI X
DDEBUGPREFIX.

DDEBUGSUFFI X
DDEBUGSUFFIX.

DESCRI PTI ON
A long description of the project being packaged. Thisisincluded in the relevant section of the file that controls
the packaging build.

See the Package builder.

DESCRI PTI ON_I ang
A language-specific long description for the specified | ang. This is used to populate a %gdescri ption -1
section of an RPM . spec file.

Seethe Package builder.

DFI LESUFFI X
DFILESUFFIX.

DFLAGPREFI X
DFLAGPREFIX.

DFLAGS
General optionsthat are passed to the D compiler.

DFLAGSUFFI X
DFLAGSUFFIX.

DI _FILE DR
Path where .di fileswill be generated

DI _FI LE_DI R_PREFI X
Prefix to send the di path argument to compiler

DI _FI LE_DI R_SUFFFI X
Suffix to send the di path argument to compiler

DI _FI LE_SUFFI X
Suffix of dinclude files default is .di

DI NCPREFI X
DINCPREFIX.

DI NCSUFFI X
DLIBFLAGSUFFIX.
Dir
A function that converts a string into a Dir instance relative to the target being built.
Dirs
A function that converts alist of stringsinto alist of Dir instances relative to the target being built.

DLI B
Name of thelib tool to use for D codes.

Iy
=== SCONS 203

DLI BCOM
The command line to use when creating libraries.

DLI BDI RPREFI X
DLIBLINKPREFIX.

DLI BDI RSUFFI X
DLIBLINKSUFFIX.

DLI BFLAGPREFI X
DLIBFLAGPREFIX.

DLI BFLAGSUFFI X
DLIBFLAGSUFFIX.

DLI BLI NKPREFI X
DLIBLINKPREFIX.

DLI BLI NKSUFFI X
DLIBLINKSUFFIX.

DLI NK
Name of thelinker to usefor linking systemsincluding D sources. See also $SHDLI NK for linking shared objects.

DLI NKCOM
The command line to use when linking systems including D sources. See also $SHDLI NKCOMfor linking shared
objects.

DLI NKFLAGPREFI X
DLINKFLAGPREFIX.

DLI NKFLAGS
List of linker flags. See a'so $SHDLI NKFLAGS for linking shared objects.

DLI NKFLAGSUFFI X
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTM.
The default XSLT file for the DocbookHt m builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
Thedefault XSLT filefor theDocbookHt ml Chunked builder within the current environment, if noother XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHt m hel p builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

Iy
=== SCONS 204

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_SLI DESHTM.
Thedefault XSLT filefor the Docbook Sl i desHt ml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK _DEFAULT_XSL_SLI DESPDF
The default XSLT file for the Docbook Sl i desPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer f op or xep, if one of themisinstalled (f op gets checked first).

DOCBOCK_FOPCOM
The full command-line for the PDF renderer f op or xep.

DOCBOOK_FOPCOVSTR
The string displayed when arenderer likef op or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additional command-line flags for the PDF renderer f op or xep.

DOCBOOK_XM_LI NT
The path to the external executable xni | i nt , if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no Ixml Python binding can be imported in the current system.

DOCBOOK_XM_LI NTCOM
The full command-line for the external executablexm | i nt .

DOCBOOK_XM_LI NTCOVSTR
The string displayed when xmi | i nt isused to resolve XIncludes for agiven XML file.

DOCBOOK_XM_LI NTFLAGS
Additional command-line flags for the external executablexm | i nt .

DOCBOOK_XSLTPRCC
The path to the external executable xsl t pr oc (or saxon, xal an), if one of them isinstalled. Note, that this
isonly used as last fallback for XSL transformations, if no Ixml Python binding can be imported in the current
system.

DOCBOOK_ XSLTPROCCOM
The full command-line for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xs| t pr oc isused to transform an XML file viaagiven XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additional command-line flags for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCPARANS
Additional parametersthat are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon- xsl t , respectively.

DPATH
List of pathsto search for import modules.

Iy
=== SCONS 205

DRPATHPREFI X
DRPATHPREFIX.

DRPATHSUFFI X
DRPATHSUFFIX.

DSUFFI XES
Thelist of suffixes of filesthat will be scanned for imported D package files. The default listis['.d"].

DVERPREFI X
DVERPREFIX.

DVERSI ONS
List of version tags to enable when compiling.

DVERSUFFI X
DVERSUFFIX.

DVI PDF
The TeX DVI file to PDF file converter.

DVI PDFCOM
The command line used to convert TeX DVI filesinto a PDF file.

DVI PDFCOVBTR
The string displayed when aTeX DVI fileis converted into a PDF file. If thisis not set, then $DVI PDFCOM(the
command line) is displayed.

DVI PDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVI PS
The TeX DVI file to PostScript converter.

DVI PSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
The execution environment - adictionary of environment variables used when SCons invokes external commands
to build targets defined in this construction environment. When $ENV is passed to a command, al list values are
assumed to be path lists and are joined using the search path separator. Any other non-string values are coerced
to astring.

Note that by default SCons does not propagate the environment in effect when you execute scons (the "shell
environment") to the execution environment. Thisis so that buildswill be guaranteed repeatable regardless of the
environment variables set at the time scons is invoked. If you want to propagate a shell environment variable to
the commands executed to build target files, you must do so explicitly. A common example is the system PATH
environment variable, so that sconswill find utilities the same way as the invoking shell (or other process):

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH]})
Although it is usually not recommended, you can propagate the entire shell environment in one go:

i mport os
env = Environment (ENV=0s. envi ron. copy())

Iy
=== SCONS 206

ESCAPE
A function that will be called to escape shell specia characters in command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

FO3
The Fortran 03 compiler. Y ou should normally set the SFORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

FO3COoM
The command line used to compile a Fortran 03 sourcefileto an object file. Y ou only need to set $F03 COMif you
need to use a specific command line for Fortran 03 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for al Fortran versions.

FO3COVSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $FO3COM
or $FORTRANCOM(the command line) is displayed.

FO3FI LESUFFI XES
Thelist of file extensions for which the FO3 dialect will be used. By default, thisis[' . f 03"]

FO3FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO3PATH. See
$_FO03I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO3FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F03Il NCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F031 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO3PATH.

FO3PATH

The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO3FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO3PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto lookup adirectory relative to the root of the source tree, use#: Y ou only
need to set $FO3PATH if you need to define a specific include path for Fortran 03 files. Y ou should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnment (FO3PATH=' #/i ncl ude')

The directory lookup can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FO3PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ FO031 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $SFO3PATH. Any command lines you define
that need the FO3PATH directory list should include $_F031 NCFLAGS:

Iy
=== SCONS 207

env = Environnent (FO3COVE"ny_conpi | er $_FO03I NCFLAGS -c -0 $TARGET $SOURCE")

FO3PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO3FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO3PPCOMif you need to use a specific C-preprocessor command
line for Fortran 03 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO3PPCOVBTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO3PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO3PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO3 dialect will be used. By default,
thisis empty.

F08
The Fortran 08 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

FO8COM
The command line used to compile a Fortran 08 sourcefileto an object file. Y ou only need to set $F08 COMif you
need to use a specific command line for Fortran 08 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FO8COVSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $FO8COM
or $FORTRANCOM (the command line) is displayed.

FO8FI LESUFFI XES
Thelist of file extensions for which the FO8 dialect will be used. By default, thisis[' . f 08"]

FOBFLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO8PATH. See
$_F08I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO8FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

__F08I NCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO8PATH.

FO8PATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO8FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO8PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto lookup adirectory relative to the root of the source tree, use#: Y ou only
need to set $FO8PATH if you need to define a specific include path for Fortran 08 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

Iy
=== SCONS 208

env = Environment (FOBPATH=" #/i ncl ude')

The directory lookup can aso be forced using the Di r () function:

include = Dir('include')
env = Environnent (FO8PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO08! NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FO8PATH. Any command lines you define
that need the FOBPATH directory list should include $_F08! NCFLAGS:

env = Envi ronnent (FO8COVE" my_conpi | er $_FO08I NCFLAGS -c -0 $TARGET $SOURCE")

FO8PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO8FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F08 PPCOMif you need to use a specific C-preprocessor command
line for Fortran 08 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO8PPCOVBTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO8PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO8PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO8 dialect will be used. By default,
thisis empty.

F77
The Fortran 77 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77COM
The command line used to compile aFortran 77 sourcefile to an object file. Y ou only need to set $F77 COMif you
need to use a specific command line for Fortran 77 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

F77COVSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FI LESUFFI XES
Thelist of file extensions for which the F77 dialect will be used. By default, thisis[' . f 77"]

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F771 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

Iy
=== SCONS 209

_F771 NCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F771 NCFLAGS is created by appending
$I NCPREFI X and $I NCSUFFI X to the beginning and end of each directory in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto lookup adirectory relative to the root of the source tree, use#: Y ou only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnent (F77PATH=" #/ i ncl ude')

The directory lookup can aso be forced using the Di r () function:

include = Dir("include')
env = Environnent (F77PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F771 NCFLAGS
construction variable, which is constructed by appending the values of the $|1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F771 NCFLAGS:

env = Environnent (F77COME"ny_conpi |l er $ F771 NCFLAGS -c -0 $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F77PPCOMif you need to use a specific C-preprocessor command
line for Fortran 77 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOVETR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOMor $FORTRANPPCOM (the command line) is displayed.

F77PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By defaullt,
thisis empty.

F90
The Fortran 90 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. Y ou only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

FooCom
The command line used to compile a Fortran 90 sourcefileto an object file. Y ou only need to set $F90COMif you
need to use a specific command line for Fortran 90 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

Iy
=== SCONS 210

FOOCOVSTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

FOOFI LESUFFI XES
Thelist of file extensions for which the FO0 dialect will be used. By default, thisis[' . f 90"]

FOOFLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO0PATH. See
$_F90Il NCFLAGS below, for the variable that expands to those options. Y ou only need to set SFOOFLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F90l NCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F90OPATH.

FOOPATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI0FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto lookup adirectory relative to the root of the source tree, use#: Y ou only
need to set $FOOPATH if you need to define a specific include path for Fortran 90 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOOPATH=' #/i ncl ude')

The directory lookup can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FO9OPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F901 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $F90PATH. Any command lines you define
that need the FOOPATH directory list should include $_F90I NCFLAGS:

env = Environnment (FOOCOVE"nmy_conpi l er $_F90I NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FOOPPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F90PPCOMif you need to use a specific C-preprocessor command
line for Fortran 90 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FOOPPCOVBTR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. If not set, then $F90PPCOMor $FORTRANPPCOM (the command line) is displayed.

Iy
=== SCONS 211

FOOPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
thisis empty.

F95
The Fortran 95 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

Fo95COoM
The command line used to compile a Fortran 95 sourcefileto an object file. Y ou only need to set $F95COMif you
need to use a specific command line for Fortran 95 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for al Fortran versions.

FO5COVSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM(the command line) is displayed.

FO5FI LESUFFI XES
Thelist of file extensions for which the F95 dialect will be used. By default, thisis[' . f 95']

FO5FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F95I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO5FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95I1 NCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F951 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F95PATH.

FO5PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI5FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto lookup adirectory relative to the root of the source tree, use#: Y ou only
need to set $F95PATH if you need to define a specific include path for Fortran 95 files. Y ou should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FO5PATH=" #/i ncl ude')

The directory lookup can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FO95PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ F951 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $SF95PATH. Any command lines you define
that need the FO5PATH directory list should include $_F951 NCFLAGS:

Iy
=== SCONS 212

env = Environnent (FO5COVE"ny_conpi | er $_F951 NCFLAGS -c -0 $TARGET $SOURCE")

FO5PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F95PPCOMif you need to use a specific C-preprocessor command
line for Fortran 95 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO5PPCOVBTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOMor $FORTRANPPCOM(the command line) is displayed.

FO95PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By defaullt,
thisis empty.

File
A function that converts a string into a File instance relative to the target being built.

FI LE_ENCODI NG
File encoding used for fileswritten by Text fi | e and Subst fi | e. Set to "utf-8" by default.

New in version 4.5.0.

FORTRAN
The default Fortran compiler for al versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction variables are included
on this command line.

FORTRANCOVMONFLAGS
General user-specified options that are passed to the Fortran compiler. Similar to $FORTRANFLAGS, but this
construction variable is applied to all dialects.

New in version 4.4.

FORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFI LESUFFI XES
The list of file extensions for which the FORTRAN dialect will be used. By default, thisis[* . f', '.for',
oftn']

FORTRANFLAGS
General user-specified options for the FORTRAN dialect that are passed to the Fortran compiler. Note that this
variabledoesnot contain - | (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_FORTRANI NCFLAGS and $_ FORTRANMODFLAGfor the construction variables
that expand those options.

_FORTRANI NCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $ FORTRANI NCFLAGS is

Iy
=== SCONS 213

created by respectively prepending and appending $1 NCPREFI X and $I NCSUFFI X to the beginning and end
of each directory in $SFORTRANPATH.

FORTRANMODDI R
Directory location where the Fortran compiler should place any module filesit generates. This variable is empty,
by default. Some Fortran compilerswill internally append thisdirectory in the search path for modulefiles, aswell.

FORTRANMODDI RPREFI X
The prefix used to specify amodul e directory on the Fortran compiler command line. Thiswill be prepended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

FORTRANMODDI RSUFFI X
The suffix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
end of the directory in the SFORTRANMODDI R construction variableswhenthe$ FORTRANMODFLAGvariables
isautomatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $_FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDI RPREFI X and $FORTRANMODDI RSUFFI X to the beginning and end of the
directory in $FORTRANMODDI R.

FORTRANMODPREFI X
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for modulefiles of nodul e_name. nod. Asaresult, thisvariableisleft empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
thisvariable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFI X
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of rodul e_nane. nod. Asaresult, thisvariableis set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH

Thelist of directoriesthat the Fortran compiler will search for includefilesand (for some compilers) modulefiles.
The Fortran implicit dependency scanner will search these directories for include files (but not modulefiles since
they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory argumentsin FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory namesin FORTRANPATH will belooked-up relative
to the SConscript directory when they are used in a command. To force scons to lookup a directory relative to
the root of the source tree, use #:

env = Environment (FORTRANPATH=' #/ i ncl ude')
The directory look-up can aso be forced using the Di r () function:
include = Dir('include')

env = Envir onment (FORTRANPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ FORTRANI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

Iy
=== SCONS 214

$I NCPREFI X and $I NCSUFFI X construction variables to the beginning and end of each directory in
$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANI NCFLAGS:

env = Envi ronnent (FORTRANCOVE" ny_conpi | er $ FORTRANI NCFLAGS -c -0 $TARGET $SCOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the SFORTRANFLAGS, $CPPFLAGS, $ CPPDEFFLAGS,
$ FORTRANMODFLAG, and $ _FORTRANI NCFLAGS construction variables are included on this command line.

FORTRANPPCOVSTR
If set, the string displayed when aFortran sourcefileis compiled to an object file after first running thefilethrough
the C preprocessor. If not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFI LESUFFI XES
The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, thisis[' . fpp', '.FPP']

FORTRANSUFFI XES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

(. f*, ".F, ".for", ".FOR', ".ftn", ".FTN', ".fpp", ".FPP",
“ofrrt, t.Fr7t, ".f90", ".F90", ".f95", ".F95"]
FRAMEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEWORKS). For example:

env. AppendUni que(FRANEWORKPATH=" #nyf r amewor kdi r ')

will add

- Fnyf r amewor kdi r

to the compiler and linker command lines.

_ FRAMEWORKPATH
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAVEWORKPATH.

FRAMEVWORKPATHPREFI X
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAVEWORKPATH).
The default valueis- F.

FRAMEWORKPREFI X
On Mac OS X with gec, the prefix to be used for linking in frameworks (see $FRAVEVWORKS). The default value
is-framewor k.

Iy
=== SCONS 215

FRAMEWORKS
On Mac OS X with gcc, alist of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env. AppendUni que(FRAMEWORKS=Spl i t (' Syst em Cocoa SystemConfiguration'))

_ FRAMEWORKS
On Mac OS X with gec, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS,

FRAMEWCRKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAVEWORKPATH,
SFRAVEWORKPATHPREFI X, SFRAVEWORKPREFI X and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCom
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sQut put Fi | e=$TARGET $SOURCES".

GSCOMVBTR
The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then
$GSCOM(the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default valueis“- dNOPAUSE - dBATCH - sDEVI CE=pdf wri t e”

HOST_ARCH
The name of the host hardware architecture used to create this construction environment. The platform code sets
this when initializing (see $PLATFORM and the pl at f or margument to Envi r onnment). Note the detected
name of the architecture may not be identical to that returned by the Python pl at f or m nmachi ne method.

On the wi n32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. Changing the values at any later time will not cause the tool to be
reinitialized. Valid host arch values are x86 and ar mfor 32-bit hosts and and64, ar n64, and x86_ 64 for 64-
bit hosts.

Should be considered immutable. $HOST_ARCHisnot currently used by other platforms, but the optionisreserved
to do soin future

HOST_CS
The name of the host operating system for the platform used to create this construction environment. The platform
code sets thiswhen initializing (see $PLATFORMand the pl at f or margument to Envi r onment).

Should be considered immutable. $HOST _OS is not currently used by SCons, but the option is reserved to do
soin future

| DLSUFFI XES

The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default listis:

Iy
=== SCONS 216

[".idl", ".1DL"]

| MPLI BNOVERSI ONSYMLI NKS
Used to override $SHLI BNOVERSI ONSYMLI NKS/$LDMODULENOVERSI ONSYMLI NKS when creating
versioned import library for a shared library/loadable module. If not defined, then
$SHLI BNOVERSI ONSYMLI NKS/$L DMODUL ENOVERSI ONSYMLI NKS isused to determinewhether to disable
symlink generation or not.

| MPLI BPREFI X
The prefix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl |). The cygl i nk linker sets $| MPLI BPREFI X to ' | i b' and
$SHLI BPREFI Xto' cyg' .

| MPLI BSUFFI X
The suffix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl |). Thecygl i nk linker sets $| MPLI BSUFFI Xto' . dl | .a"' and
$SHLI BSUFFI Xto' . dl I ".

| MPLI BVERSI ON
Used to override $SHLI BVERSI ON$SLDMODULEVERSI ON when generating versioned import library for a
shared library/loadable module. If undefined, the $SHL1 BVERSI ON'$L DMODUL EVERSI ONisused to determine
the version of versioned import library.

| MPLI CI T_COVIVAND _DEPENDENCI ES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SConswill add to each target animplicit dependency on the command represented by thefirst argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable$! MPLI CI T_COMVAND _DEPENDENCI EStoaTrue-likevalue(“true”, “yes’, or “1” - but not anumber
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segmented string, each segment is a
separate “ command line”, these are run sequentialy until onefails, or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $I MPLI CI T_COMVAND _DEPENDENCI ES is applied
to each segment.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to a False-like value (“none”, “false”, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to “2” or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependenciesto the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to “all”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added asimplicit dependenciesto the targets
built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

Iy
=== SCONS 217

env = Environment (1 MPLI CI T_COMVAND DEPENDENCI ES=Fal se)

I NCPREFI X
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPI NCFLAGS and
$ FORTRANI NCFLAGS variables are automatically generated.

| NCSUFFI X
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS and
$_FORTRANI NCFLAGS variables are automatically generated.

| NSTALL
A function to be called to install afile into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the sourcefile's). The function takes
the following arguments:

def install (dest, source, env):

dest isthe path name of the destination file. sour ce isthe path name of the sourcefile. env isthe construction
environment (a dictionary of construction values) in force for thisfile installation.

| NSTALLSTR
The string displayed when afileisinstalled into a destination file name. The default is:

Install file: "$SOURCE" as "S$TARCET"

| NTEL_C_COWPI LER_VERSI ON
Set by thei nt el ¢ Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDI R
The directory to which the Java archive tool should change (using the - C option).

JARCOM
The command line used to call the Java archive tool.

JARCOVSTR
The string displayed when the Java archive toal is called If thisis not set, then $J ARCOM (the command line)
is displayed.

env = Environnent (JARCOMSTR="JARchi vi ng $SOURCES i nto $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default, thisis set to cf to create the necessary jar file.

JARSUFFI X
The suffix for Javaarchives: . j ar by default.

JAVABOOTCLASSPATH
Specifiesthe location of the bootstrap classfiles. Can be specified asastring or Node object, or asalist of strings
or Node objects.

Iy
=== SCONS 218

Thevalue will be added to the JDK command linesviathe - boot ¢l asspat h option, which requires asystem-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVABOOTCLASSPATH is provided in list form. If $JAVABOOTCLASSPATH is a single string containing
search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is
inherently system-specific; to supply the path in a system-independent manner, give $J AVABOOT CLASSPATH
asalist of pathsinstead.

Note

Can only be used when compiling for releases prior to JDK 9.

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java classfiles.
Any options specified in the $J AVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Javaclassfiles. If this
is not set, then $J AVACCOM(the command line) is displayed.

env = Environnment (JAVACCOVSTR="Conpi |l ing class files $TARCGETS from $SOURCES")

JAVACFLAGS
General optionsthat are passed to the Java compiler.

JAVACLASSDI R
The directory in which Java class files may be found. This is stripped from the beginning of any Java. cl ass
file names supplied to the JavaH builder.

JAVACLASSPATH
Specifiesthe class search path for the JDK tools. Can be specified asa string or Node object, or asalist of strings
or Node objects. Class path entries may be directory names to search for class files or packages, pathnames to
archives (. j ar or . zi p) containing classes, or paths ending in a "base name wildcard" character (*), which
matchesfilesin that directory with a. j ar suffix. See the Java documentation for more details.

The value will be added to the JDK command lines via the - cl asspat h option, which requires a system-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVACLASSPATH is provided in list form. If $J AVACLASSPATH is a single string containing search path
separator characters (; for POSIX systems or ; for Windows), it will be split on the separator into a list of
individual pathsfor dependency scanning purposes. It will not be modified for JIDK command-line usage, sosucha
string isinherently system-specific; to supply the path in asystem-independent manner, give $J AVACLASSPATH
asalist of pathsinstead.

Note

SCons always supplies a - sour cepat h when invoking the Java compiler javac, regardless of the
setting of $J AVASOURCEPATH, asit passes the path(s) to the source(s) supplied in the call tothe Java
builder via - sour cepat h . From the documentation of the standard Java toolkit for javac: “If not
compiling code for modules, if the - - sour ce- pat h or - sour cepat h option is not specified, then
the user class path isalso searched for sourcefiles.” Since- sour cepat h isalways supplied, javac will
not use the contents of the value of $J AVACLASSPATH when searching for sources.

Iy
=== SCONS 219

JAVACLASSSUFFI X
The suffix for Javaclassfiles; . ¢l ass by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$J AVAHCOM (the command line) is displayed.

env = Environnment (JAVAHCOVETR="Gener ati ng header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAI NCLUDES
Include path for Java header files (such asj ni . h).

JAVAPROCESSORPATH
Specifies the location of the annotation processor class files. Can be specified as a string or Node object, or as
alist of strings or Node objects.

Thevalue will be added to the JDK command linesviathe - pr ocessor pat h option, which requires asystem-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVAPROCESSORPATH is provided in list form. If $JAVAPROCESSORPATH is a single string containing
search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is
inherently system-specific; to supply the path in a system-independent manner, give $J AVAPROCESSORPATH
asalist of pathsinstead.

New in version 4.5.0

JAVASOURCEPATH
Specifies the list of directories that will be searched for input (source) . j ava files. Can be specified as a string
or Node object, or asalist of strings or Node objects.

The value will be added to the JDK command lines via the - sour cepat h option, which requires a system-
specific search path separator, Thiswill be supplied by SCons as needed when it constructs the command line if
$JAVASOURCEPATH is provided in list form. If $J AVASOURCEPATH is a single string containing search path
separator characters(: for POSIX systemsor ; for Windows), it will not be modified, and soisinherently system-
specific; to supply the path in a system-independent manner, give $J AVASOURCEPATH as alist of pathsinstead.

Note that the specified directories are only added to the command line via the - sour cepat h option. SCons
does not currently search the $J AVASOURCEPATH directories for dependent . j ava files.

JAVASUFFI X
The suffix for Javafiles; . j ava by default.

JAVAVERS| ON
Specifies the Java version being used by the Java builder. Set this to specify the version of Java targeted by the
javac compiler. This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be generated by the

Iy
=== SCONS 220

javac compiler. Setting $J AVAVERSI ON to a version greater than 1. 4 makes SCons redlize that a build with
such acompiler is actually up-to-date. The defaultis 1. 4.

While thisis not primarily intended for selecting one version of the Java compiler vs. another, it does have that
effect on the Windows platform. A more precise approach is to set $J AVAC (and related construction variables
for related utilities) to the path to the specific Java compiler you want, if that is not the default compiler. On non-
Windows platforms, theal t er nat i ves system may provide away to adjust the default Java compiler without
having to specify explicit paths.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
$LATEXCOM(the command line) is displayed.

env = Environnment (LATEXCOVSTR = "Bui |l di ng $TARGET from LaTeX i nput $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRI ES
The maximum number of times that LaTeX will be re-run if the. | og generated by the $L ATEXCOMcommand
indicates that there are undefined references. The default isto try to resolve undefined references by re-running
LaTeX up to threetimes.

LATEXSUFFI XES
Thelist of suffixesof filesthat will be scanned for LaTeX implicit dependencies(\ i ncl ude or\ i nport files).
The default listis:

[".tex", ".ltx", ".latex"]

L DMODULE
The linker for building loadable modules. By default, thisisthe same as $SHLI NK.

L DMODUL ECOM
The command linefor building loadable modules. On Mac OS X, thisusesthe $L. DMODUL E, $L DMODUL EFLAGS
and $FRAVEVWORKSFLAGS variables. On other systems, thisisthe same as $SHLI NK.

L DMODULECOVSTR
If set, the string displayed when building loadable modules. If not set, then $L DMODUL ECOM(the command line)
isdisplayed.

LDMODULEEM TTER
Contains the emitter specification for the Loadabl eModul e builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

L DMODULEFLAGS
General user options passed to the linker for building |oadable modules.

L DMODUL ENOVERSI ONSYMLI NKS
Instructs the Loadabl eMbdul e builder to not automatically create symlinks for versioned modules. Defaults
to $SHLI BNOVERSI ONSYMLI NKS

Iy
=== SCONS 221

L DMODUL EPREFI X
The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLI BPREFI X.

_ L DMODUL ESONAMVE
A macro that automatically generates loadable modules SONAME based on $TARGET,
$LDMODULEVERSION and $LDMODULESUFFIX. Used by Loadabl eModul e builder when thelinker tool
supports SONAME (e.g. gnhul i nk).

L DMODUL ESUFFI X
The suffix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSI ON
When this construction variable is defined, a versioned loadable module is created by Loadabl eModul e
builder. This activates the $_ L DMODUL EVERSI ONFLAGS and thus modifies the $L DMODUL ECOMas required,
adds the version number to the library name, and creates the symlinks that are needed. $L DMODULEVERSI ON
versions should exist in the same format as $SHLI BVERSI ON.

_ LDMODULEVERSI ONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
Loadabl eModul e (that is when $LDMODULEVERSI ON is set). _LDMODULEVERSI ONFLAGS usualy
adds $SHLI BVERSI ONFLAGS and some extra dynamically generated options (such as - W, - sonane=
$_LDMODULESONAME). It is unused by plain (unversioned) loadable modules.

LDMODUL EVERSI ONFLAGS
Extra flags added to $L DMODULECOMwhen building versioned Loadabl eMbdul e. These flags are only used
when $LDMODULEVERSI ONiis set.

LEX
Thelexical analyzer generator.

LEX_ HEADER FI LE
If supplied, generate a C header file with the name taken from this variable. Will be emitted asa - - header -
fi | e= command-line option. Usethisin preferenceto including - - header - fi | e= in SLEXFLAGS directly.

LEX_TABLES_FI LE
If supplied, write the lex tablesto afile with the name taken from this variable. Will be emitted asa- - t abl es-
fi | e= command-line option. Use thisin preferencetoincluding - - t abl es- fi | e=in $LEXFLAGS directly.

LEXCOM
The command line used to call the lexical analyzer generator to generate a sourcefile.

LEXCOVSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM (the command line) is displayed.

env = Environnent (LEXCOMSTR="Lex' i ng $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator. In addition to passing the value on during invocation, the
| ex tool also examines this construction variable for options which cause additional output files to be generated,
and adds those to the target list. Recognized for this purpose are GNU flex options - - header-fil e=and- -
t abl es-fi | e=; the output file is named by the option argument.

Iy
=== SCONS 222

Notethat filesspecified by - - header-fi | e=zand- -t abl es-fi | e= may not be properly handled by SCons
in al situations. Consider using $SLEX_HEADER_FI LE and $LEX_TABLES_FI LE instead.

LEXUNI STD
Used only in Windows environments to set alex flag to prevent 'unistd.h’ from being included. The default value
is'--nounistd'.

_LI BDI RFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directories to be searched for library. Thevalue of $_LI BDI RFLAGS is created by respectively prepending and
appending $LI BDI RPREFI X and $L1 BDI RSUFFI X to each directory in $L1 BPATH.

LI BDI RPREFI X
The prefix used to specify alibrary directory on the linker command line. Thiswill be prepended to each directory
inthe $LI BPATH construction variable when the $_ L1 BDI RFLAGS variable is automatically generated.

LI BDI RSUFFI X
The suffix used to specify alibrary directory on the linker command line. Thiswill be appended to each directory
inthe $LI BPATH construction variable when the $_ L1 BDI RFLAGS variable is automatically generated.

LI BEM TTER
Contains the emitter specification for the St at i cLi br ary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

_LI BFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_ L1 BFLAGS is created by respectively prepending
and appending $L1 BLI NKPREFI X and $L1 BLI NKSUFFI X to each filenamein $LI BS.

LI BLI NKPREFI X
The prefix used to specify alibrary to link on the linker command line. Thiswill be prepended to each library in
the $LI BS construction variable when the $_L1 BFLAGS variable is automatically generated.

LI BLI NKSUFFI X
The suffix used to specify alibrary to link on the linker command line. This will be appended to each library in
the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LI BLI TERALPREFI X

If the linker supports command line syntax directing that the argument specifying a library should be searched
for literally (without modification), $L1 BLI TERALPREFI X can be set to that indicator. For example, the GNU
linker follows this rule: “ -1 : f 00 searches the library path for a filename called f 00, without converting it
toli bfoo.soorlibfoo.a.” If $LI BLI TERALPREFI X is set, SCons will not transform a string-valued
entry in $LI BS that starts with that string. The entry will still be surrounded with $L1 BLI NKPREFI X and
$LI1 BLI NKSUFFI X on the command line. Thisis useful, for example, in directing that a static library be used
when both a static and dynamic library are available and linker policy isto prefer dynamic libraries. Compared
to the examplein $LI BS,

env. Append(LIBS=":11ibmylib.a")

will let the linker select that specific (static) library name if found in the library search path. This differs from
using aFi | e object to specify the static library, as the latter bypasses the library search path entirely.

LI BPATH
Thelist of directoriesthat will be searched for libraries specified by the $LI BS construction variable. $LI BPATH
should be alist of path strings, or a single string, not a pathname list joined by Python's os. pat hsep. Do not
put library search directives directly into $L1 NKFLAGS or $SHLI NKFLAGS as the result will be non-portable.

Iy
=== SCONS 223

Note: directory namesin $L1 BPATHwill be looked-up relative to the directory of the SConscript file when they
are used in acommand. To force sconsto lookup adirectory relativeto the root of the sourcetree, usethe# prefix:

env = Environment (LI BPATH=" #/1i bs")

The directory lookup can also be forced using the Di r function:

libs = Dir('libs")
env = Environnment (LI BPATH=I i bs)

The directory list will be added to command lines through the automatically-generated $ LI BDI RFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$LI1 BDI RPREFI X and $LI BDI RSUFFI X construction variables to each directory in $LI BPATH. Any
command lines you define that need the $L1 BPATH directory list should include $_LI| BDI RFLAGS:

env = Envi ronnment (LI NKCOVE"ny_| i nker $ LI BDI RFLAGS $ LI BFLAGS -0 $TARGET $SOURCE")

LI BPREFI X
The prefix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BPREFI XES
A list of all legal prefixesfor library file names on the current platform. When searching for library dependencies,
SCons will look for files with these prefixes, the base library name, and suffixes from the $LI BSUFFI XES list.

LI BS
Thelist of libraries that will be added to the link line for linking with any executable program, shared library, or
loadable module created by the construction environment or override.

For portability, a string-valued library name should include only the base library name, without prefixes such
aslib orsuffixessuch as. so or . dl | . SCons will attempt to strip prefixes from the $LI BPREFI XES list
and suffixes from the $LI BSUFFI XES list, but depending on that behavior will make the build less portable:
for example, on a POSIX system, no attempt will be made to strip a suffix like . dl | . Library name strings in
$LI BS should not include a path component: instead use $L1 BPATH to direct the compiler to look for librariesin
those paths, plus any default paths the linker searchesin. If $L1 BLI TERALPREFI X is set to anon-empty string,
then a string-valued $L1 BS entry that starts with $L1 BLI TERALPREFI X will cause the rest of the entry to be
searched for unmodified, but respecting normal library search paths (this is an exception to the guideline above
about leaving off the prefix/suffix from the library name).

If a$LI BS entry isaNode object (either as returned by a previous Builder call, or asthe result of an explicit call
to Fi | e), the pathname from that Node will be added to $ LI BFLAGS, and thus to the link line, unmodified
- without adding $L1 BLI NKPREFI X or $LI BLI NKSUFFI X. Such entries are searched for literally (including
any path component); the library search paths are not used. For example:

env. Append(LIBS=File('/tnmp/ nylib.so"))

For each Builder call that causes linking with libraries, SCons will add the libraries in the setting of $LI BS in
effect at that moment to the dependency graph as dependencies of the target being generated.

The library list will be transformed to command-line arguments through the automatically-generated
$_LI BFLAGS construction variable which is constructed by respectively prepending and appending the values
of the $LI1 BLI NKPREFI X and $L1 BLI NKSUFFI X construction variables to each library name.

Iy
=== SCONS 224

Any command lines you define yourself that need the libraries from $L1 BS should include $_LI BFLAGS (as
well as$_ LI BDI RFLAGS) rather than $L1 BS. For example:

env = Environnment (LI NKCOVE"ny_|inker $ LI BDI RFLAGS $ LI BFLAGS -0 $TARGET $SOURCE")

LI BSUFFI X
The suffix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BSUFFI XES
A list of al legal suffixesfor library file names. on the current platform. When searching for library dependencies,
SCons will look for files with prefixes from the $L1 BPREFI XES list, the base library name, and these suffixes.

LI CENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause etc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for alist of license names and SPDX codes.

See the Package builder.

L1 NESEPARATOR
The separator used by the Substfil e and Text fi | e builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

LI NGUAS_FI LE
The $LI NGUAS_FI LE defines file(s) containing list of additional linguas to be processed by PO nit,
PQUpdat e or MOFi | es builders. It also affects Tr ans| at e builder. If the variable contains a string, it defines
the name of thelist file. The $LI NGUAS_FI LE may be alist of file names aswell. If $LI NGUAS_FI LE is set
to anon-string truthy value, the list will be read from the file named L1 NGUAS.

LI NK
The linker. See also $SHLI NK for linking shared objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LI NKCOM
The command line used to link object filesinto an executable. See also $SHLI NKCOMfor linking shared objects.

LI NKCOVSTR
I set, the string displayed when object filesarelinked into an executable. If not set, then $L1 NKCOM(the command
line) is displayed. See also $SHLI NKCOVSTR. for linking shared objects.

env = Environnent (LI NKCOVSTR = "Li nki ng $TARGET")

LI NKFLAGS
General user options passed to the linker. Note that this variable should not contain - | (or similar) options
for linking with the libraries listed in $LI BS, nor - L (or similar) library search path options that scons
generates automatically from $L1 BPATH. See $_LI BFLAGS above, for the variable that expands to library-
link options, and $_L1 BDI RFLAGS above, for the variable that expands to library search path options. See aso
$SHLI NKFLAGS. for linking shared objects.

Iy
=== SCONS 225

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

w4
The M4 macro preprocessor.

M4-COM
The command line used to pass files through the M4 macro preprocessor.

MACOVBTR
The string displayed when afile is passed through the M4 macro preprocessor. If thisis not set, then $\VdCOM
(the command line) is displayed.

MAFLAGS
General options passed to the M4 macro preprocessor.

MAKEI NDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEI NDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEI NDEXCOMSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If thisis not set, then $MAKEI NDEXCOM (the command line) is displayed.

MAKEI NDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

MAXLI NELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

M DL
The Microsoft IDL compiler.

M DLCOM
The command line used to pass files to the Microsoft IDL compiler.

M DLCOVSTR
The string displayed when the Microsoft IDL compiler iscalled. If thisis not set, then $M DLCOM(the command
line) is displayed.

M DLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFI X
Suffix used for MOfiles (default: * . mo'). Seerrsgf nt tool and MOFi | es builder.

MBGFMT
Absolute path to msgfmt(1) binary, found by Det ect () . Seensgf nt tool and MOFi | es builder.

MSG-MICOM
Complete command line to run msgfmt(1) program. See nsgf mt tool and MOFi | es builder.

MSGFMICOVSTR
String to display when msgfmt(1) isinvoked (default: ' ', which means "~ print $MSGFMICOM'). See nsgf nt
tool and MOFi | es builder.

Iy
=== SCONS 226

MBGFMIFLAGS
Additional flagsto msgfmt(1). See nsgf nt tool and MOFi | es builder.

MSA NI T
Path to msginit(1) program (found viaDet ect). Seensgi ni t tool and PO ni t builder.

MBG NI TCOM
Complete command line to run msginit(1) program. See nsgi ni t tool and PO ni t builder.

M5G NI TCOMSTR
String to display when msginit(1) isinvoked. The default is an empty string, which will print the command line
($MSA NI TCOM). Seensgi ni t tool and PO ni t builder.

MBGE NI TFLAGS
List of additional flags to msginit(1) (default: []). Seensgi ni t tool and PO ni t builder.

_MBSG NI TLOCALE
Interna “"macro". Computes locale (language) name based on target filename (default:
" ${ TARGET. fi | ebase}"').

Seensgi nit tool and PA ni t builder.

MSGVERGE
Absolute path to msgmer ge(1) binary as found by Det ect () . See nsgmner ge tool and POUpdat e builder.

MSGVERGECOM
Complete command line to run msgmer ge(1) command. See nsgner ge tool and POUpdat e builder.

MSGVERGECOMSTR
String to be displayed when msgmer ge(1) isinvoked. The default isan empty string, whichwill print the command
line ($MSGVERGECOM). See nsgner ge tool and POUpdat e builder.

MBGVERCGEFLAGS
Additional flags to msgmer ge(1) command. See nsgner ge tool and POUpdat e builder.

MSSDK_DI R
The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MBSDK_VERSI ON
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versionsinclude 6. 1, 6. 0A, 6. 0, 2003R2 and 2003R1.

MBVC_BATCH

When set to any trueval ue, specifiesthat SCons should batch compilation of object fileswhen calling the Microsoft
Visual C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in asingle call to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invacation (via the $CHANGED SOURCES construction variable). Any compilations
where the object (target) file base name (minus the . obj) does not match the source file base name will be
compiled separately.

MBVC_NOTFOUND_PCLI CY
Specify the scons behavior when the Microsoft Visual C++ compiler is not detected.

The $MSVC_NOTFOUND_POQLI CY specifiesthe scons behavior when no msvc versions are detected or when the
requested msvc version is not detected.

The valid values for $MSVC_NOTFOUND_PCOLI CY and the corresponding scons behavior are:

Iy
=== SCONS 227

"Error' or 'Exception’
Raise an exception when no msvc versions are detected or when the requested msvc version is not detected.
"Warni ng' or 'warn'
Issue awarning and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

"l gnore' or 'Suppress’
Take no action and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.
The $MSVC_NOTFOUND_POLI CY is applied when any of the following conditions are satisfied:

» $MBVC_VERSI ONis specified, the default tools list isimplicitly defined (i.e., the tools list is not specified),
and the default tools list contains one or more of the msvc tools.

» $MBVC_VERSI ON is specified, the default tools list is explicitly specified (eg., t ool s=["' default']),
and the default tools list contains one or more of the msvc tools.

» A non-default tools list is specified that contains one or more of the msvc tools (e.g., t ool s=[' nsvC',
"melink']).
The $MSVC_NOTFOUND_POLI CY isignored when any of the following conditions are satisfied:

+ $MBVC VERSI ON is not specified and the default tools list is implicitly defined (i.e., the tools list is not
specified).

+ $MBVC VERSI ON is not specified and the default tools list is explicitly specified (eg.,
tool s=["'default']).

» A non-default tool list is specified that does not contain any of the msvc tools (e.g., t ool s=[' mi ngw]).
Important usage details:

* $MBVC_NOTFOUND_PCLI CY must be passed as an argument to the Envi r onment constructor when an
msvc tool (e.g., msvc, meVS, €tc.) is loaded via the default tools list or via a tools list passed to the
Envi ronment constructor. Otherwise, $MSVC_NOTFOUND_POLI CY must be set before the first msvc tool
isloaded into the environment.

When $MSVC_NOTFOUND_POLI CY is not specified, the default scons behavior is to issue a warning and
continue subject to the conditions listed above. The default scons behavior may change in the future.

New in version 4.4

MBVC_SCRI PT_ARGS
Pass user-defined arguments to the Microsoft Visual C++ batch file determined via autodetection.

$MSVC_SCRI PT_ARGS is available for msvc batch file arguments that do not have first-class support via
construction variables or when there is an issue with the appropriate construction variable validation. When
available, it is recommended to use the appropriate construction variables (e.g., $SMSVC_TOOLSET_VERSI ON)
rather than $SMSVC_SCRI PT_ ARGS arguments.

Thevalid values for $MSVC_SCRI PT_ARGS are: None, astring, or alist of strings.

The $MSVC_SCRI PT_ARGS valueisconverted to ascalar string (i.e., "flattened"). Theresulting scalar string, if
not empty, is passed as an argument to the msvc batch file determined via autodetection subject to the validation
conditions listed below.

Iy
=== SCONS 228

$MBVC_SCRI PT_ARGS isignored when the value is None and when the result from argument conversionisan
empty string. The validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
* $MSVC_SCRI PT_ARGS is specified for Visual Studio 2013 and earlier.
e Multiple SDK version arguments (e.g., ' 10. 0. 20348. 0') are specified in SMSVC_SCRI PT_ARGS.

* $MBVC SDK VERSI ON is specified and an SDK version argument (eg., ' 10.0.20348.0") is
specified in $MSVC_SCRI PT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSI ON and
$MBVC _SCRI PT_ARGS are not allowed.

e Multiple toolset version arguments (eg., '-vcvars_ver=14.29') ae gpecified in
$MSVC_SCRI PT_ARGS.

+ $MSVC TOOLSET_VERSI ON is specified and a toolset version argument (eg., -
vcvars_ver=14. 29') is specified in SMSVC_SCRI PT_ARGS. Multiple toolset version declarations via
$MSVC_TOOLSET_VERSI ONand $MSVC_SCRI PT_ARGS are not allowed.

» Multiple spectre library arguments (e.g., ' -vcvars_spectre_l i bs=spectre') are specified in
$MSVC_SCRI PT_ARGS.

« $MBVC SPECTRE_LIBS is enabled and a spectre library argument (eg., '-
vcvars_spectre_l i bs=spectre') is specified in $MSVC_SCRI PT_ARGS. Multiple spectre library
declarations via$MSVC_SPECTRE_LI BS and $MSVC_SCRI PT_ARGS are not allowed.

e Multiple UWP arguments (e.g., uwp or st or e) are specified in $MSVC_SCRI PT_ARGS.

o $SMSVC_UWP_APP is enabled and a UWP argument (e.g., uwp or store) is specified in
$MBVC_SCRI PT_ARGS. Multiple UWP declarations via $MSVC_UWP_APP and $MSVC_SCRI PT_ARGS
are not alowed.

Example 1 - A Visua Studio 2022 build with an SDK version and a toolset version specified with a string
argument:

env = Environnment (MSVC VERSI ON=' 14. 3', MSVC_SCRI PT_ARGS=' 10. 0. 20348. 0 -vcvars_ver=14. 29

Example 2 - A Visual Studio 2022 build with an SDK version and atool set version specified with alist argument:

env = Environment (MSVC_VERSI ON=' 14. 3', MSVC_SCRI PT_ARGS=["' 10. 0. 20348. 0', '-vcvars_ver=1
Important usage details:

» $MBVC_SCRI PT_ARGS must be passed as an argument to the Envi r onnent constructor when an msvc
tool (e.g., nVvC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, SMSVC_SCRI PT_ARGS must be set before the first msvc tool is loaded into the
environment.

» Other than checking for multiple declarations as described above, $MSVC_SCRI PT_ ARGS arguments are not
validated.

 Erroneous, inconsistent, and/or version incompatible SMSVC_SCRI PT_ARGS arguments are likely to result
in build failures for reasons that are not readily apparent and may be difficult to diagnose. The burden is on
the user to ensure that the arguments provided to the msvc batch file are valid, consistent and compatible with
the version of msvc selected.

Iy
=== SCONS 229

New in version 4.4

MBVC_SCRI PTERRCR_PCLI CY
Specify the scons behavior when Microsoft Visual C++ batch file errors are detected.

The $MSVC_SCRI PTERROR_PCLI CY specifies the scons behavior when msvc batch file errors are detected.
When $MSVC_SCRI PTERROR_PQOLI CY is not specified, the default scons behavior is to suppress msvc batch
file error messages.

Theroot cause of msvc build failures may be difficult to diagnose. In these situations, setting the scons behavior
to issue a warning when msvc batch file errors are detected may produce additional diagnostic information.

The valid values for $MSVC_SCRI PTERROR_PCLI CY and the corresponding scons behavior are:

"Error' or 'Exception'
Raise an exception when msvc batch file errors are detected.

"Warning' or 'Warn'
I ssue awarning when msvc batch file errors are detected.

"l gnore' or 'Suppress’
Suppress msvc batch file error messages.

New in version 4.4
Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

Example 1 - A Visual Studio 2022 build with user-defined script arguments:

env = environnment (MSVC VERSI ON=' 14. 3', MSVC SCRI PT_ARGS=['8.1', 'store', '-vcvars_ver=1
env. Program(' hello', ['hello.c'], CCFLAGS='/MD, LIBS=['Kkernel32', 'user32', 'runtineob

Example 1 - Output fragment:

link /nol ogo /QUT: buil dOO1\ hel | 0. exe kernel 32.1ib user32.1ib runtineobject.lib _buildO
LINK : fatal error LNK1104: cannot open file ' MSVCRT. i b’

Example 2 - A Visua Studio 2022 build with user-defined script arguments and the script error policy set to issue
awarning when msvc batch file errors are detected:

env = environment (MSVC_VERSI ON=' 14. 3', MSVC SCRI PT_ARGS=['8.1', 'store', '-vcvars_ver=1
env. Progran('hello', ['hello.c'], CCFLAGS='/MD , LIBS=['kernel32', 'user32', 'runtineob

Example 2 - Output fragment:

scons: warning: vc script errors detected:

[ERROR vcvars. bat] The UWP Application Platformrequires a Wndows 10 SDK.

[ERROR vcvars. bat] WndowsSdkDir = "C: \Program Fil es (x86)\W ndows Kits\8.1\"
[ERROR vcvars. bat] host/target architecture is not supported : { x64 , x64 }

link /nologo /QUT: buil dOO1\ hel | 0. exe kernel 32.1ib user32.1ib runtineobject.lib _buildO

Iy
=== SCONS 230

LINK : fatal error LNK1104: cannot open file ' MSVCRT. i b’
Important usage details:

¢ $MBVC SCRI PTERROR PQOLI CY must be passed as an argument to the Envi r onnment constructor when
an msvc tool (e.g., msvc, NBVS, €tc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, $MSVC_SCRI PTERROR _POLI CY must be set before the first msvc
tool isloaded into the environment.

» Due to scons implementation details, not all Windows system environment variables are propagated to the
environment in which the msvc batch file is executed. Depending on Visual Studio version and installation
options, non-fatal msvc batch file error messages may be generated for ancillary tools which may not affect
builds with the msvc compiler. For this reason, caution is recommended when setting the script error policy
to raise an exception (e.g.,' Error"').

New in version 4.4

MBVC_SDK_VERSI ON
Build with a specific version of the Microsoft Software Development Kit (SDK).

The vaid valuesfor $MSVC_SDK_VERSI ON are: None or a string containing the requested SDK version (e.g.,
' 10. 0. 20348. 0").

$MBVC_SDK_VERSI ONisignored when thevalueisNone and when the valueisan empty string. The validation
conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
» $MBVC _SDK_VERSI ONis specified for Visua Studio 2013 and earlier.

» $MBVC_SDK_VERSI ONis specified and an SDK version argument is specified in SMSVC_SCRI PT_ARGS.
Multiple SDK versiondeclarationsvia$MsVC_SDK_VERSI ONand $MSVC_SCRI PT_ARGS are not allowed.

» The $MBVC_SDK_VERSI ON specified does not match any of the supported formats:
e 110. 0. XXXXX. Y' [SDK 10.0]
e '8.1" [SDK 8.1]

» The system folder for the corresponding $MSVC_SDK_VERSI ON version is not found. The requested SDK
version does not appear to beinstalled.

» The $MSVC_SDK_VERSI ON version does not appear to support the requested platform type (i.e., UAP or
Deskt op). Therequested SDK version platform type components do not appear to be installed.

* The $MSVC_SDK_VERSI ONversion is 8. 1, the platform type is UAP, and the build tools selected are from
Visual Studio 2017 and later (i.e., $MSVC_VERSI ON must be '14.0' or $MBVC_TOOLSET_VERSI ON must
be'14.0".

Example 1 - A Visual Studio 2022 build with a specific Windows SDK version:

env = Environnment (MSVC VERSI ON=' 14. 3', MSVC _SDK VERSI ON=' 10. 0. 20348. 0')

Example 2 - A Visual Studio 2022 build with a specific SDK version for the Universal Windows Platform:

env = Environnment (MSVC_VERSI ON=' 14. 3', MSVC_SDK_VERSI ON=' 10. 0. 20348. 0, MSVC_UWP_APP=Tr

Iy
=== SCONS 231

Important usage details:

» $MSVC_SDK_VERSI ON must be passed as an argument to the Envi r onnent constructor when an msvc
tool (e.g., meVC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, $MSVC_SDK_VERSI ON must be set before the first msvc tool is loaded into the
environment.

» Should a SDK 10.0 version be installed that does not follow the naming scheme above, the SDK version will
need to be specified via SMSVC_SCRI PT_ARGS until the version number validation format can be extended.

» Should an exception be raised indicating that the SDK version is not found, verify that the requested SDK
version isinstalled with the necessary platform type components.

» There is a known issue with the Microsoft libraries when the target architecture is ARM64 and a Windows
11 SDK (version' 10. 0. 22000. 0' and later) is used with the v141 build tools and older v142 toolsets
(versions' 14. 28. 29333' and earlier). Should build failures arise with these combinations of settings due
to unresolved symbols in the Microsoft libraries, $SMSVC_SDK_VERSI ON may be employed to specify a
Windows 10 SDK (e.g.,' 10. 0. 20348. 0') for the build.

New in version 4.4

MSVC_SPECTRE_LI BS
Build with the spectre-mitigated Microsoft Visual C++ libraries.

Thevalid valuesfor $MSVC_SPECTRE_LI BS are: Tr ue, Fal se, or None.

When $MSVC_SPECTRE_LI BSisenabled (i.e., Tr ue), the Microsoft Visual C++ environment will include the
paths to the spectre-mitigated implementations of the Microsoft Visual C++ libraries.

An exception is raised when any of the following conditions are satisfied:
e $MBVC_SPECTRE_LI BSisenabled for Visua Studio 2015 and earlier.

» $MBVC SPECTRE_LI BSisenabled and a spectre library argument is specified in $MSVC_SCRI PT_ARGS.
Multiple spectre library declarations via $MSVC_SPECTRE_LI BS and $MSVC_SCRI PT_ARGS are not
alowed.

» $MBVC SPECTRE_LI BSisenabled and the platform type is UWP. There are no spectre-mitigated librariesfor
Universal Windows Platform (UWP) applications or components.

Example - A Visua Studio 2022 build with spectre mitigated Microsoft Visual C++ libraries:

env = Environment (MSVC_VERSI ON=' 14. 3', MSVC_SPECTRE_LI BS=Tr ue)
Important usage details:

* $MBVC_SPECTRE_LI BS must be passed as an argument to the Envi r onnment constructor when an msvc
tool (e.g., nVvC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, $MSVC_SPECTRE_ LI BS must be set before the first msvc tool is loaded into the
environment.

» Additional compiler switches(e.g.,/ spect r e) arenecessary for including spectre mitigationswhen building
user artifacts. Refer to the Visual Studio documentation for details.

» The existence of the spectre libraries host architecture and target architecture folders are not verified when
$MBVC_SPECTRE_LI BSisenabled which could result in build failures. The burden is on the user to ensure
the requisite libraries with spectre mitigations are installed.

Iy
=== SCONS 232

New in version 4.4

MBVC_TOOLSET_VERSI ON
Build with a specific Microsoft Visual C++ toolset version.

Specifying $MSVC_TOOLSET_VERSI ON does not affect the autodetection and selection of msvc instances. The
$MBVC_TOOLSET_VERSI ONisapplied after an msvc instance is selected. This could be the default version of
msvc if $MSVC_VERSI ONis not specified.

Thevalid valuesfor SMBVC_TOCOLSET_VERSI ONare: None or astring containing the requested tool set version
(eg.,' 14.29").

$MSVC_TOOLSET_VERSI ONis ignored when the value is None and when the value is an empty string. The
validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
» $MSVC_TOOLSET_VERSI ONis specified for Visual Studio 2015 and earlier.

 $MSVC _TOCOLSET_VERSI ON is specified and a toolset version argument is specified in
$MSVC_SCRI PT_ARGS. Multiple toolset version declarations via $MSVC TOOLSET VERSI ON and
$MSVC_SCRI PT_ARGS are not allowed.

e The SMSVC TOOLSET_VERSI ON specified does not match any of the supported formats:
o ' XXY
o XX YY
o " XX YY. 227277

o XX YY. Z' to' XX. YY. ZZZZ' [sconsextension not directly supported by the msve batch files and may
be removed in the future]

e "XX. YY.ZZ. N [SXSforma]
« " XX YY.ZZ. NN [SxSformat]

» The major msvc version prefix (i.e., ' XX. Y) of the SMSVC_TOOLSET_VERSI ON specified is for Visual
Studio 2013 and earlier (e.g.,' 12. 0").

* Themajor msvc version prefix (i.e., * XX. Y') of the SMSVC_TOOLSET_VERSI ON specified is greater than
the msvc version selected (e.g., ' 99. 0').

» A system folder for the corresponding $MSVC_TOOLSET_VERSI ON version is not found. The requested
toolset version does not appear to beinstalled.

Toolset selection details:

* When $SMSVC_TOOLSET_VERSI ONis not an SxS version number or a full toolset version number: the first
tool set version, ranked in descending order, that matches the SMSVC_TOOLSET_VERSI ON prefix is selected.

* When $MSVC_TOOLSET_VERSI ONis specified using the major msvc version prefix (i.e, ' XX. Y') and the
major msvc version is that of the latest release of Visual Studio, the selected toolset version may not be the
same as the default Microsoft Visual C++ toolset version.

In the latest release of Visual Studio, the default Microsoft Visual C++ toolset version is not necessarily the
toolset with the largest version number.

Iy
=== SCONS 233

Example 1 - A default Visual Studio build with a partial toolset version specified:

env = Environment (MSVC_TOCOLSET_VERSI ON=' 14. 2')

Example 2 - A default Visual Studio build with a partial toolset version specified:

env = Environnment (MSVC_TOOLSET_VERSI ON=' 14. 29')

Example 3 - A Visual Studio 2022 build with afull toolset version specified:

env = Environment (MSVC_VERSI ON=' 14. 3', MSVC _TOOLSET_VERSI ON=' 14. 29. 30133")

Example 4 - A Visual Studio 2022 build with an SxS tool set version specified:

env = Environnment (MSVC VERSI ON=' 14. 3', MSVC TOOLSET VERSI ON=' 14. 29. 16. 11')
Important usage details:

* $MBVC TOOLSET_VERSI ON must be passed as an argument to the Envi r onment constructor when an
msvc tool (e.g., nsvc, MBVS, etc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, SMSVC_TOOLSET_VERSI ONmust be set before the first msvc tool
isloaded into the environment.

e The existence of the toolset host architecture and target architecture folders are not verified when
$MBVC_TOCOLSET_VERSI ONis specified which could result in build failures. The burden is on the user to
ensure the requisite toolset target architecture build tools are installed.

New in version 4.4

MBVC_USE_SCRI PT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of aVisual Studio . bat file (e.g. vcvar s. bat), SConswill run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %8 NCLUDEY, %41 B% and %4°ATH
99 for supplying to the build. This can be useful to force the use of acompiler version that SCons does not detect.
$MBVC _USE_SCRI PT_ARGS provides arguments passed to this script.

Setting $MSVC_USE_SCRI PT to None bypasses the Visua Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MBVC _USE_SCRI PT ignores SMSVC _VERSI ONand $TARGET _ARCH.
Changed in version 4.4: new $MSVC_USE_SCRI PT_ARGS provides away to pass arguments.

MBVC_USE_SCRI PT_ARGS
Provides arguments passed to the script $SMSVC_USE_SCRI PT.

New in version 4.4

MBVC_USE_SETTI NGS
Use adictionary to set up the Microsoft Visual C++ compiler.

$MSVC_USE_SETTI NGS is ignored when $MSVC USE SCRI PT is defined andior when
$MBVC_USE_SETTI NGSisset to None.

Iy
=== SCONS 234

The dictionary is used to populate the environment with the relevant variables (typically %8 NCLUDEY, %1 B%
and YPATHY) for supplying to the build. This can be useful to force the use of acompiler environment that SCons
does not configure correctly. This is an aternative to manually configuring the environment when bypassing
Visual Studio autodetection entirely by setting $MSVC_USE_SCRI PT to None.

Here is an example of configuring a build environment using the Microsoft Visual C++ compiler included in the
Microsoft SDK on a 64-bit host and building for a 64-bit architecture:

Mcrosoft SDK 6.0 (MSVC 8.0): 64-bit host and 64-bit target
nsvc_use_settings = {
"PATH': [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ Bi n\\ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ Bi n\\ x64",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\Bi n",
"C.\\ W ndows\\ M crosoft.NET\\ Franmewor k\\ v2. 0. 50727",
"C:\\ W ndows\ \ syst en32",
"C.\\ W ndows",
"C:\\ W ndows\ \ Syst en82\ \ Whent',
"C:\\ W ndows\ \ Syst enB2\ \ W ndowsPower Shel | \\ v1. O\\"
1,
"1 NCLUDE": [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ | ncl ude",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ | ncl ude\\ Sys",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ I ncl ude",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ I ncl ude\\gl ",
1,
"LIB": [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ Li b\ \ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\Li b\\ x64",

LI BPATH": [],

"VSCVD_ARG app_plat": [],
"VCI NSTALLDIR": [],
"VCTool slnstallDir": []

}

Speci fying MSVC VERSI ON i s recomended
env = Environnent (MSVC VERSI ON=' 8. 0', MSVC USE SETTI NGS=nsvc_use_setti ngs)

Important usage details:

» $MBVC USE_SETTI NGS must be passed as an argument to the Envi r onnment constructor when an msvc
tool (e.g., nsVvC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnent
constructor. Otherwise, $MSVC _USE SETTI NGS must be set before the first msvc tool is loaded into the
environment.

» Thedictionary content requirements are based on the internal msvc implementation and therefore may change
at any time. The burden is on the user to ensure the dictionary contents are minimally sufficient to ensure
successful builds.

New in version 4.4

MBVC_UWP_APP
Build with the Universal Windows Platform (UWP) application Microsoft Visual C++ libraries.

Iy
=== SCONS 235

Thevalid valuesfor $MSVC_UWP_APP are: True, ' 1' , Fal se,' 0", or None.

When $MSVC_UWP_APP isenabled (i.e, True or' 1'), the Microsoft Visual C++ environment will be set up
to point to the Windows Store compatible libraries and Microsoft Visual C++ runtimes. In doing so, any libraries
that are built will be able to be used in a UWP App and published to the Windows Store.

An exception is raised when any of the following conditions are satisfied:
« SMBVC UWP_APP isenabled for Visual Studio 2013 and earlier.

* $MBVC_UWP_APP is enabled and a UWP argument is specified in SMSVC_SCRI PT_ARGS. Multiple UWP
declarations via$MsVC_UWP_APP and $MSVC_SCRI PT_ARGS are not allowed.

Example - A Visual Studio 2022 build for the Universal Windows Platform:

env = Environment (MSVC VERSI ON=' 14. 3", MSVC_UWP_APP=Tr ue)
Important usage details:

* $MSVC_UWP_APP must be passed as an argument to the Envi r onment constructor when an msvc tool (e.g.,
nevc, Vs, etc.) isloaded viathe default toolslist or viaatoolslist passed tothe Envi r onnment constructor.
Otherwise, SMBVC_UWP_APP must be set before the first msvc tool isloaded into the environment.

» The existence of the UWP librariesis not verified when $MSVC_UWP_APP is enabled which could result in
build failures. The burden is on the user to ensure the requisite UWP libraries are installed.

MSVC_VERSI ON
A string to select the preferred version of Microsoft Visual C++. If the specified version is unavailable and/or
unknown to SCons, awarning is issued showing the versions actually discovered, and the build will eventually
fail indicating amissing compiler binary. If $MSVC_VERSI ONisnot set, SConswill (by default) select the latest
version of Microsoft Visual C++ installed on your system (excluding any preview versions).

Note

In order to take effect, $MSVC_VERSI ON must be set before the initial Microsoft Visual C++ compiler
discovery takes place. Discovery happens, at the latest, during the first call to the Envi r onnment
function, unlessat ool s list is specified which excludes the entire Microsoft Visual C++ toolchain -
that is, omits " def aul t s" and any specific tool module that refers to parts of the toolchain (nsvc,
nmsl i nk,masmm dl andnsvs). Inthiscase, detection isdeferred until any one of those tool modules
isinvoked manually. The following two examples illustrate this:

MSVC VERSI ON set as Environnent is created
env = Environment (MSVC_VERSI ON=' 14. 2')

Initialization deferred with enpty tools, triggered manually
env = Environment (tool s=[])

env[' MSVC VERSION'] = '14.2

env. Tool (' msvc')

env. Tool (' msl i nk')

env. Tool (' msvs')

The valid vaues for $MSVC_VERSI ON represent major versions of the compiler, except that versions ending
in Exp refer to "Express' or "Express for Desktop" Visual Studio editions. Values that do not look like avalid
compiler version string are not supported.

Iy
=== SCONS 236

The following table shows the correspondence of $MSVC_VERSI ON values to various version indicators (‘X' is
used as a placeholder for asingle digit that can vary).

SConsKey _MBVC VER Visual Studio
Visual C++ Product M SBuild /
Version Visual Studio

"14.5" 14.5x 195x Visual Studio 2026 18.x

"14. 3" 14.3x 193x Visua Studio 2022 17.x, 17.1x

"14. 2" 14.2x 192x Visual Studio 2019 16.x, 16.1x

"14. 1" 14.1 or 14.1x 191x Visual Studio 2017 15.x

"14. 1Exp" 14.1 or 14.1x 191x Visual Studio 2017 15.x
Express

"14. 0" 14.0 1900 Visual Studio 2015 14.0

"14. OExp" 14.0 1900 Visual Studio 2015 14.0
Express

"12. 0" 12.0 1800 Visual Studio 2013 12.0

"12. OExp" 12.0 1800 Visual Studio 2013 12.0
Express

"11. 0" 11.0 1700 Visual Studio 2012 11.0

"11. OExp" 11.0 1700 Visual Studio 2012 11.0
Express

"10. 0" 10.0 1600 Visual Studio 2010 10.0

"10. OExp" 10.0 1600 Visual C++ Express 10.0
2010

"9.0" 9.0 1500 Visual Studio 2008 9.0

"9. OExp" 9.0 1500 Visual C++ Express 9.0
2008

"8.0" 8.0 1400 Visual Studio 2005 8.0

"8. OExp" 8.0 1400 Visual C++ Express 8.0
2005

7. 1" 71 1300 Visual Studio .NET 71
2003

"7.0" 7.0 1200 Visual Studio .NET 7.0
2002

"6.0" 6.0 1100 Visual Studio 6.0 6.0

Note

* Itisnot necessary toinstall aVisual Studio IDE to build with SCons (for example, you caninstall only
Build Tools), but when aVisua Studio IDE isinstalled, additional builders such as MSVSSol uti on
and MSVSPr oj ect become available and correspond to the specified versions.

e Versionsending in Exp refer to historical "Express' or "Express for Desktop" Visual Studio editions,
which had feature limitations compared to the full editions. It is only necessary to specify the Exp
suffix to select the express edition when both express and non-express editions of the same product are
installed simultaneoudly. The Exp suffix is unnecessary, but accepted, when only the express edition
isinstalled.

Iy
=== SCONS 237

The compilation environment can be further or more precisely specified through the use of several
other construction variables: see the descriptions of $MSVC_TOOLSET_VERSI ON, $MSVC_SDK_VERSI ON,
$MBVC _USE_SCRI PT, SMSVC_USE_SCRI PT_ARGS, and $SMSVC_USE_SETTI NGS.

MBVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSV S being used (can be set via$MSVC_VERSI ON)

VERSIONS
the available versions of MSVSinstaled

VCINSTALLDIR
installed directory of Microsoft Visual C++

VSINSTALLDIR
installed directory of Visua Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted latest to ol dest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If a value is not set, it was not available in the registry. Visual Studio 2017 and later do not use the
registry for primary storage of this information, so typically for these versions only PRQJECTSUFFI X and
SOLUTI ONSUFFI X will be set.

MBVS_ARCH
Sets the architecture for which the generated project(s) should build.

Thedefault valueisx86. and64 isalso supported by SConsfor most Visua Studio versions. Since Visual Studio
2015 ar mis supported, and since Visua Studio 2017 ar m64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for a given Visua Studio version will generate an error.

M5VS_PRQIECT_GUI D
The string placed in a generated Microsoft Visual C++ project file as the value of the Pr oj ect GUI D attribute.
Thereis no default value. If not defined, anew GUID is generated.

MBVS_SCC_AUX_PATH
The path name placed in agenerated Microsoft Visual C++ project file asthe value of the Scc Aux Pat h attribute
if the MBVS_SCC_PROVI DER construction variable is also set. There is no default value.

Iy
=== SCONS 238

MBVS_SCC_CONNECTI ON_ROOT

The root path of projects in your SCC workspace, i.e the path under which al project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visua C++ project and solution files are computed. The relative project file path is
placed as the value of the ScclLocal Pat h attribute of the project file and as the values of the
SccProj ect Fi | ePat hRel ati vi zedFromConnection[i] (where [i] ranges from O to the number
of projects in the solution) attributes of the @ obal Sect i on(Sour ceCodeCont rol) section of the
Microsoft Visual Studio solution file. Similarly, the relative solution file path is placed as the values of the
ScclLocal Pat h[i] (where [i] ranges from O to the number of projects in the solution) attributes of the
d obal Secti on(Sour ceCodeCont rol) section of the Microsoft Visua Studio solution file. Thisis used
only if the MSBVS_SCC_PROVI DER construction variable is also set. The default value is the current working
directory.

MBVS_SCC_PRQIECT_NAME
The project name placed in agenerated Microsoft Visual C++ project file asthe value of the SccPr oj ect Nane
attributeif theMSVS_SCC_PROVI DER construction variableisalso set. Inthiscasethestring isalso placed inthe
SccPr oj ect NaneO0 attribute of the @ obal Sect i on(Sour ceCodeCont rol) section of the Microsoft
Visual Studio solution file. Thereis no default value.

MBVS_SCC_PROVI DER
The string placed in a generated Microsoft Visual C++ project file as the value of the SccPr ovi der attribute.
Thestring isalso placed inthe SccPr ovi der 0 attribute of thed obal Sect i on(Sour ceCodeControl)
section of the Microsoft Visua Studio solution file. Thereis no default value.

MBVS_VERSI ON
Set the preferred version of Microsoft Visual Studio to use.

If $MBVS_VERSI ONisnot set, SConswill (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. Y ou can override
this by specifying the SMBVS_VERSI ON variable when initializing the Environment, setting it to the appropriate
version ('6.0" or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

Deprecated since 1.3.0: $MSVS_VERSI ON is deprecated in favor of SMSVC_VERSI ON. As a transitional aid,
if $MBVS_VERSI ONis set and $MSVC_VERSI ONis not, $MSVC_VERSI ON will be initialized to the value of
$MBVS_VERSI ON. An error israised if both are set and have different values.

MBVSBUI LDCOM
The build command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with any specified build targets.

MBVSCLEANCOM
The clean command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with the - ¢ option to remove any specified targets.

MBVSENCODI NG
The encoding string placed in a generated Microsoft Visual C++ project file. The default is encoding
W ndows- 1252.

MBVSPRQJECTCOM
The action used to generate Microsoft Visual C++ project files.

MBVSPRQJECTSUFFI X
The suffix used for Microsoft Visual C++ project (DSP) files. Thedefault valueis. vexpr oj whenusing Visual
Studio 2010 and later, . vcpr oj when using Visua Studio versions between 2002 and 2008, and . dsp when
using Visual Studio 6.0.

Iy
=== SCONS 239

MBVSREBUI LDCOM
The rebuild command line placed in a generated Microsoft Visual C++ project file. The default isto have Visual
Studio invoke SCons with any specified rebuild targets.

MBVSSCONS
The SCons used in generated Microsoft Visual C++ project files. The default is the version of SCons being used
to generate the project file.

MBVSSCONSCOM
The default SCons command used in generated Microsoft Visual C++ project files.

MBVSSCONSCRI PT
The sconscript file (that is, SConst r uct or SConscri pt file) that will be invoked by Microsoft Visual C++
project files (through the $MSVSSCONSCOMvariable). The default is the same sconscript file that contains the
call to MSVSPr oj ect to build the project file.

MBVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual C++ project files.

MBVSSCLUTI ONCOM
The action used to generate Microsoft Visual Studio solution files.

MBVSSCLUTI ONSUFFI X
The suffix used for Microsoft Visua Studio solution (DSW) files. The default valueis. sl n when using Visual
Studio version 7.x (.NET 2002) and later, and . dswwhen using Visual Studio 6.0.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See also
$W NDOAN5_EMBED MANI FEST.

MIEXECOM
The Windows command line used to embed manifests into executables. See also $MI'SHLI BCOM

MIFLAGS
Flags passed to the $MT manifest embedding program (Windows only).

MI'SHLI BCOM
The Windows command line used to embed manifests into shared libraries (DLLS). See also $MIEXECOM

MACW VERSI ON
The version number of the Metrowerks CodeWarrior C compiler to be used.

MACW VERSI ONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NANMVE
Specfies the name of the project to package.

See the Package builder.

NI NJA ALI AS NAME
The name of the alias target which will cause SConsto create the ninjabuild file, and then (optionally) run ninja.
The default valueisgener at e- ni nj a.

NI NJA_CMD_ARGS
A string which will pass arguments through SConsto the ninjacommand when scons executes ninja. Has no effect
if NI NJA_DI SABLE_AUTO_RUN s set.

Iy
=== SCONS 240

This value can also be passed on the command line:

scons NI NJA CVD_ARGS=-v
or
scons NI NJA CMD _ARGS="-v -j 3"

NI NJA_COVPDB_EXPAND
Boolean value to instruct ninja to expand the command line arguments normally put into response files. If true,
prevents unexpanded lines in the compilation database like “gcc @ sp_fi | €” and instead yields expanded
lineslike“gcc -c -o nyfile.o nyfile.c -la -DXYZ".

Ninja's compdb tool added the - x flag in NinjaV1.9.0

NI NJA DEPFI LE_PARSE_FORNVAT
Determines the type of format ninja should expect when parsing header include depfiles. Can be msvc, gcc, or
cl ang. The nsvc option corresponds to / showl ncl udes format, and gcc or ¢l ang correspond to - MVD
- MR

NI NJA DI R
Thebui | ddi r value. Propagates directly into the generated ninjabuild file. From Ninjasdocs: “ A directory for
some Ninjaoutput files. ... (Y ou can also store other build output in thisdirectory.) ” Thedefault valueis. ni nj a.

NI NJA DI SABLE_AUTO_RUN
Boolean. Default: Fal se. If true, SCons will not run ninja automatically after creating the ninja build file.

If not explicitly set, this will be set to True if --disable _execute ninja or
Set Opti on(' di sabl e_execute_ninja', True) isseen.

NI NJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and the
SCons execution environment.

It will be compatible with the default shell of the operating system.

If not explicitly set, SCons will generate this dynamically from the execution environment stored in the current
construction environment (e.g. env[' ENV']) where those values differ from the existing shell..

NI NJA_FI LE_NAMVE
The filename for the generated Ninja build file. The default isni nj a. bui | d.

NI NJA_FORCE_SCONS_BUI LD
If true, causes the build nodes to call back to scons instead of using ninjato build them. This is intended to be
passed to the environment on the builder invocation. It is useful if you have a build node which does something
which isnot easily trandlated into ninja.

NI NJA_GENERATED_SOURCE_ALI AS_NAME
A string matching the name of a user defined alias which represents a list of all generated sources. This will
prevent the auto-detection of generated sources from $NI NJA_GENERATED SOURCE_SUFFI XES. Then all
other sourcefileswill be madeto depend onthisintheninjabuild file, forcing the generated sourcesto bebuilt first.

NI NJA_GENERATED_SOURCE_SUFFI XES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixeswill be added to the _generated _sources aliasin the output ninjabuild file. Then all other sourcefileswill
be made to depend on thisin the ninja build file, forcing the generated sources to be built first.

Iy
=== SCONS 241

NI NJA_MBVC _DEPS_PREFI X
The nsvc_deps_prefi x string. Propagates directly into the generated ninja build file. From Ninja's docs:
“defines the string which should be stripped from msvc's/ showl ncl udes output”

NI NJA_POOL
Set theni nj a_pool for thisor all targetsin scope for this env var.

NI NJA_ REGENERATE_DEPS
A generator function used to create a ninja depfile which includes al the files which would require SCons to be
invoked if they change. Or alist of said files.

_NINJA_REGENERATE_DEPS_FUNC
Internal value used to specify the function to call with argument env to generate the list of fileswhich, if changed,
would require the ninja build file to be regenerated.

NI NJA_ SCONS_DAEMON _KEEP_ALI VE
The number of seconds for the SCons daemon launched by ninjato stay alive. (Default: 180000)

NI NJA_SCONS_DAEMON_PORT
The TCP/IP port for the SCons daemon to listen on. NOTE: You cannot use a port already being listened to on
your build machine. (Default: random number between 10000,60000)

NI NJA_SYNTAX
The pathto acustomni nj a_synt ax. py filewhichisused in generation. Thetool currently assumesyou have
ninjainstalled as a Python module and grabs the syntax file from that installation if SNI NJA SYNTAX is not
explicitly set.

no_inport _lib
When set to non-zero, suppresses creation of acorresponding Windows staticimport lib by theShar edLi brary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (. exp) filewhen using Microsoft Visual Studio.

OBJPREFI X
The prefix used for (static) object file names.

OBJSUFFI X
The suffix used for (static) object file names.

PACKAGEROOT
Specifiesthedirectory whereall filesinresulting archivewill be placed if applicable. Thedefault valueis” $NAME-
$VERSI ON'.

See the Package builder.

PACKAGETYPE
Selects the package type to build when using the Package builder. It may be a string or list of strings. See the
documentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the - - package- t ype command line option.
See the Package builder.

PACKAGEVERSI ON
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

Seethe Package builder.

Iy
=== SCONS 242

PCH
A node for the Microsoft Visual C++ precompiled header that will be used when compiling object files. This
variableisignored by tools other than Microsoft Visual C++. Whenthisvariableisdefined, SConswill add options
to the compiler command line to cause it to use the precompiled header, and will also set up the dependencies
for the PCH file. Examples:

env['PCH] = File('StdAfx.pch")
env['PCH] = env. PCH(' pch.cc')[0]
PCHCOM

The command line used by the PCH builder to generated a precompiled header.

PCHCOMVBTR
The string displayed when generating a precompiled header. If not set, then $PCHCOM (the command line) is

displayed.

PCHPDBFLAGS
A construction variablethat, when expanded, addsthe/ y Dflag to the command line only if the $PDB construction
variableis set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variable is not being used. When this variable is defined, it must be a
string that is the name of the header that is included at the end of the precompiled portion of the source files, or
the empty string if the "#pragma hrdstop" construct is being used:

env[' PCHSTOP'] = ' StdAfx. h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env[' PDB'] = 'hello.pdb'

The Microsoft Visual C++ compiler switch that SCons uses by default to generate PDB informationis/ Z7. This
works correctly with parallel (- j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is aso the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although paralel builds will no longer work. Y ou can generate PDB files with the/ Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOVETR
The string displayed when calling the pdflatex utility. If thisis not set, then $PDFLATEXCOM(the command line)
isdisplayed.

Iy
=== SCONS 243

env = Environnment (PDFLATEX; COMSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFI X
The prefix used for PDF file names.

PDFSUFFI X
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOMVBTR
The string displayed when calling the pdftex utility. If thisis not set, then $PDFTEXCOM (the command line)
isdisplayed.

env = Environnent (PDFTEXCOMSTR = "Bui | di ng $TARGET from TeX i nput $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGA NFO) to look for installed
versions of the Sun PRO C++ compiler. The default is/ usr / sbi n/ pgkchk.

PKA NFO
On Solaris systems, the package information program that will be used (along with $PKGCHK) to | ook for installed
versions of the Sun PRO C++ compiler. The default ispkgi nf o.

PLATFORM
The name of the platform used to create this construction environment. SCons sets this when initializing the
platform, which by default is auto-detected (see the pl at f or margument to Envi r onnent).

env = Environnment (tool s=[])

if env[' PLATFORM] == 'cygw n':
Tool (' m ngw) (env)

el se:
Tool (' nmsvc') (env)

POAUTO NI T
The$POAUTA NI T variable, if setto Tr ue (on non-zero numeric value), let thensgi ni t tool to automatically
initialize missing PO files with msginit(1). This applies to both, PO ni t and POUpdat e builders (and others
that use any of them).

POCREATE_ALI AS
Common alias for all POfiles created with POl ni t builder (default: ' po- creat e’). Seensgi ni t tool and
PA ni t builder.

Iy
=== SCONS 244

POSUFFI X
Suffix used for POfiles (default: ' . po') Seensgi ni t tool and PO ni t builder.

POTDOVAI N
The $PCTDOVAI N defines default domain, used to generate POT filename as SPOTDOVAI N. pot when no POT
filenameis provided by the user. This appliesto POTUpdat e, PO ni t and POUpdat e builders (and builders,
that usethem, e.g. Tr ansl at e). Normally (if $POTDOMVAI Nis not defined), the buildersuse messages. pot
as default POT file name.

POTSUFFI X
Suffix used for PO Template files (default: ' . pot '). Seexget t ext tool and POTUpdat e builder.

POTUPDATE_ALI AS
Name of the common phony target for all PO Templates created with POUpdat e (default: ' pot - updat e').
Seexget t ext tool and POTUpdat e builder.

POUPDATE_ALI AS
Common aliasfor al POfiles being defined with POUpdat e builder (default: ' po- updat e'). Seensgner ge
tool and POUpdat e builder.

PRI NT_CMD_LI NE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the - q or - s options or their equivalents). The function must accept four arguments: s, t ar get ,
sour ce and env. s isastring showing the command being executed, t ar get , is the target being built (file
node, list, or string name(s)), sour ce, is the source(s) used (file node, list, or string name(s)), and env isthe
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None,
istojust print the string, asin:
def print_cnd |ine(s, target, source, env):
sys.stdout.wite(s + "\n")
Here is an example of a more interesting function:
def print_cnd_line(s, target, source, env):

sys. stdout . wite(
"Building %6 -> %...\n"

% (
and '.join([str(x) for x in source]),
and '.join([str(x) for x in target]),
)
)
env = Environment (PRI NT_CVD LI NE FUNC=print_cnd_li ne)
env. Program(' foo', ['foo.c', '"bar.c'])
This prints:

scons: Building targets ...
Bui | di ng bar.c -> bar.o...
Bui |l ding foo.c -> foo.o0...

Iy
=== SCONS 245

Bui | ding foo.o and bar.o -> foo...
scons: done buil ding targets.

Another example could be afunction that logs the actual commandsto afile.

PROGEM TTER
Contains the emitter specification for the Pr ogr ambuilder. The manpage section "Builder Objects’ contains
general information on specifying emitters.

PROGPREFI X
The prefix used for executable file names.

PROGSUFFI X
The suffix used for executable file names.

PSCOM
The command line used to convert TeX DVI filesinto a PostScript file.

PSCOVSTR
The string displayed when aTeX DVI fileis converted into a PostScript file. If thisis not set, then $PSCOM(the
command line) is displayed.

PSPREFI X
The prefix used for PostScript file names.

PSSUFFI X
The prefix used for PostScript file names.

Qr3_AUTOSCAN
Turn off scanning for mocable files. Use the Mbc Builder to explicitly specify filesto run moc on.

Changed in 4.5.0: renamed from QT_AUTOSCAN.

Qr3_BI NPATH
The path where the Qt binaries are installed. The default value is'$QT3DI R/ bi n'.

Changed in 4.5.0: renamed from QT_BINPATH.

Qr3_CPPPATH
The path where the Qt header files are installed. The default value is '$QT3DI R/include. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

Changed in 4.5.0: renamed from QT_CPPPATH.

Qr3_DEBUG
Prints lots of debugging information while scanning for moc files.

Changed in 4.5.0: renamed from QT_DEBUG.

Qr3_LIB
Default valueis' gt ' . You may want to set thisto' gt - nt* . Note: If you set this variable to None, the tool
won't change the $L1 BS variable.

Changed in 4.5.0: renamed from QT_LIB.

QT3_LI BPATH
The path where the Qt libraries areinstalled. The default valueis'$QT3DI R/ | i b'. Note: If you set thisvariable
to None, the tool won't change the $L1 BPATH construction variable.

Iy
=== SCONS 246

Changed in 4.5.0: renamed from QT_LIBPATH.

QT3_MOC
Default valueis'$QT3_BI NPATH noc'.

QT3_MOCCXXPREFI| X
Default valueis' ' . Prefix for moc output files when sourceis a C++ file.

Qr3_ MOCCXXSUFFI X
Default valueis' . noc' . Suffix for moc output files when sourceis a C++ file.

Changed in 4.5.0: renamed from QT_MOCCXXSUFFIX.

Qr3_MOCFROMCXXCOM
Command to generate a moc file from a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOM.

QT3_MOCFROMCXXCOMSTR
The string displayed when generating amoc file from aC++ file. If thisis not set, then $QT3_ MOCFROMCXXCOM
(the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOMSTR.

QT3_MOCFROMCXXFLAGS
Default valueis' -i ' . These flags are passed to moc when moccing a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXFLAGS.

Qr3_MOCFROVHCOM
Command to generate a moc file from a header.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOM.

Qr3_MOCFROVHCOMVBTR
The string displayed when generating a moc file from a C++ file. If thisis not set, then $QT3_ MOCFROVHCOM
(the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOMSTR.

QTr3_MOCFROVHFLAGS
Default valueis' ' . These flags are passed to moc when moccing a header file.

Changed in 4.5.0: renamed from QT_MOCFROMSHFLAGS.

Qr3_MOCHPREFI X
Default valueis' moc_

. Prefix for moc output files when sourceis a header.
Changed in 4.5.0: renamed from QT_MOCHPREFIX.

QTI3_MOCHSUFFI X
Default valueis'$CXXFI LESUFFI X'. Suffix for moc output files when source is a header.

Changed in 4.5.0: renamed from QT_MOCHSUFFIX.

Qr3_uiC
Default valueis'$QT3_BI NPATH/ ui c'.

Iy
=== SCONS 247

Changed in 4.5.0: renamed from QT_UIC.

Qr3_ul ccom
Command to generate header filesfrom . ui files.

Changed in 4.5.0: renamed from QT_UICCOM.

QT3_Ul CCOVSTR
The string displayed when generating header files from . ui files. If thisis not set, then $QT3_Ul CCOM (the
command line) is displayed.

Changed in 4.5.0: renamed from QT_UICCOMSTR.

Qr3_Ul CDECLFLAGS
Default value is ™. These flags are passed to uic when creating a header filefroma. ui file.

Changed in 4.5.0: renamed from QT_UICDECLFLAGS.

Qr3_Ul CDECLPREFI X
Default valueis' ' . Prefix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECLPREFIX.

QT3_Ul CDECLSUFFI X
Default valueis' . h' . Suffix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECL SUFFIX.

Qr3_Ul Cl MPLFLAGS
Default valueis' ' . These flags are passed to uic when creating a C++ filefrom a. ui file.

Changed in 4.5.0: renamed from QT_UICIMPFLAGS.

Qr3_ul Cl MPLPREFI X
Default valueis' ui c_" . Prefix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLPREFIX.

Qr3_U Cl MPLSUFFI X
Default valueis'$CXXFI LESUFFI X'. Suffix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLSUFFIX.

Qr3_Ul SUFFI X
Default valueis' . ui ' . Suffix of designer input files.

Changed in 4.5.0: renamed from QT_UISUFFIX.

Qr3bl R
The path to the Qt install ation to build against. If not already set, gt 3 tool triesto obtainthisfromos. envi r on;
if not found there, it tries to make a guess.

Changed in 4.5.0: renamed from QTDIR.

RANLI B
The archive indexer.

RANL| BCOM
The command line used to index a static library archive.

Iy
=== SCONS 248

RANL| BCOMBTR
The string displayed when a static library archive isindexed. If thisis not set, then $RANLI BCOM(the command
line) is displayed.

env = Environnment (RANLI BCOVSTR = " | ndexi ng $TARCGET")

RANLI BFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resourcefile.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOVSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCl NCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCI NCFLAGS is created by respectively prepending and
appending $RCI NCPREFI X and $RCI NCSUFFI X to the beginning and end of each directory in $CPPPATH.

RCl NCPREFI X
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS
variableis expanded.

RCl NCSUFFI X
The suffix used to specify an include directory on the resource compiler command line. Thiswill be appended to
the end of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS variableis expanded.
RDirs
A function that converts astring into alist of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the Shar edLi br ary
builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
Shar edLi br ar y builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOMSTR
The string displayed when registering anewly-built DLL file. If thisis not set, then $REGSVRCOM(the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when anewly-built DLL library is registered.
By default, thisincludesthe/ s that prevents dialog boxes from popping up and requiring user attention.

RM C
The Java RMI stub compiler.

Iy
=== SCONS 249

RM CCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the $RM CFLAGS construction variable areincluded on this command
line.

RM CCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If thisis not set, then $RM CCOM (the command line) is displayed.

env = Envi ronnent (
RM CCOVBTR="Gener ati ng st ub/skel eton class files $TARGETS from $SOURCES"
)

RM CFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFI X and
appending $RPATHSUFFI X to the beginning and end of each directory in SRPATH.

RPATHPREFI X
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_ RPATH variable
isautomatically generated.

RPATHSUFFI X
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLI ENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENSERVI CEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These arein addition to any flags
specified in the SRPCGENFLAGS construction variable.

Iy
=== SCONS 250

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects" and "Scanner Objects’ for more information.

SCONS_HOVE
The (optional) path to the SCons library directory, initialized from the external environment. If set, thisis used
to construct a shorter and more efficient search path in the $MSVSSCONS command line executed from C++
project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOMfor compiling to static objects.

SHCCCOMBTR
If set, the string displayed when a C source file is compiled to a shared object file. If not set, then $SHCCCOM(the
command line) is displayed. See a'so $CCCOMBTR for compiling to static objects.

env = Environnment (SHCCCOMSTR = " Conpi | i ng shared object $TARGET")

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See aso $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See al'so $CXXCOM
for compiling to static objects.

SHCXXCOMBTR
If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOMSTR for compiling to static objects.

env = Environnment (SHCXXCOMSTR = " Conpi | i ng shared obj ect $TARGET")
SHCXXFLAGS

Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

Iy
=== SCONS 251

SHDC
The name of the compiler to use when compiling D source destined to be in a shared object. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOMfor compiling to
static objects.

SHDCOVBTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLI BVERSI ONFLAGS
Extra flags added to $SHDLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used
when $SHLI BVERSI ONiis set.

SHDLI NK
The linker to use when creating shared objects for code bases include D sources. See also $DLI NK for linking
static objects.

SHDL I NKCOM
The command line to use when generating shared objects. See also $DLI NKCOMfor linking static objects.

SHDLI NKFLAGS
The list of flags to use when generating a shared object. See also $DLI NKFLAGS for linking static objects.

SHEL L
A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction
variable for more information.

SHELL_ENV_GENERATORS
A hook allowing the execution environment to be modified prior to the actual execution of acommand line from
an action viathe spawner function defined by $SPAVN. Allows substitution based on targets and sources, as well
as values from the construction environment, adding extra environment variables, etc.

The value must be alist (or other iterable) of functions which each generate or alter the execution environment
dictionary. The first function will be passed a copy of the initial execution environment (3ENV in the current
construction environment); the dictionary returned by that function is passed to the next, until the iterable is
exhausted and the result returned for use by the command spawner. The original execution environment is not
modified.

Each function provided in $SHELL_ENV_GENERATORS must accept four arguments and return a dictionary:
env is the construction environment for this action; t ar get is the list of targets associated with this action;
sour ce is the list of sources associated with this action; and shel | _env is the current dictionary after
iterating any previous $SHELL_ENV_GENERATCRS functions (this can be compared to the original execution
environment, which isavailableasenv[' ENV'], to detect any changes).

Example:

def custom shell env(env, target, source, shell _env):
"""custom ze shell _env if desired
if str(target[0]) == 'special _target':
shel | _env[' SPECI AL_VAR | = env.subst (' SOVE VAR , target=target, source=source)
return shell _env

Iy
=== SCONS 252

env[" SHELL ENV_GENERATORS'] = [custom shell _env]

Available since 4.4

SHFO3
The Fortran 03 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHFO3COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHFO3COMif you need to use a specific command line for Fortran 03 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHFO3COVSBTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHFO3COMor $SHFORTRANCOM (the command line) is displayed.

SHFO3FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHFO3FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHFO3PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO3FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO3PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 03 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO3PPCOMSTR
If set, the string displayed when aFortran 03 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF03PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF08
The Fortran 08 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHFO8COMif you need to use a specific command line for Fortran 08 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHFO8COMBTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHFO8COMor $SHFORTRANCOM (the command line) is displayed.

SHFO8FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHFOBFLAGS if you need to define specific user options for Fortran 08 files. You should normally set the

Iy
=== SCONS 253

$FORTRANCOVVONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHFO8PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO8FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO8PPCOMif you need to use a specific
C-preprocessor command line for Fortran 08 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO8PPCOVSTR
If set, the string displayed when aFortran 08 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF08PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COMif you need to use a specific command line for Fortran 77 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF77COVSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COMor $SHFORTRANCOM(the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF77PPCOMif you need to use a specific
C-preprocessor command line for Fortran 77 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOVBTR
If set, the string displayed when aFortran 77 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF7 7 PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COMif you need to use a specific command line for Fortran 90 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

Iy
=== SCONS 254

SHF90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHF90COMor $SHFORTRANCOM(the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHFIOFLAGS if you need to define specific user options for Fortran 90 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFOOFLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF90PPCOMif you need to use a specific
C-preprocessor command line for Fortran 90 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOVSTR
If set, the string displayed when aFortran 90 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF90PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COMif you need to use a specific command line for Fortran 95 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHFI5COMor $SHFORTRANCOM(the command line) is displayed.

SHFI5FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHFISFLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO5FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF95PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 95 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOVBTR
If set, the string displayed when aFortran 95 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF95PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

Iy
=== SCONS 255

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file. By default, any options
specified in the $SHFORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction
variables are included on this command line. See also $FORTRANCOM

SHFORTRANCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the
file through the C preprocessor. By default, any options specified in the $SHFORTRANFLAGS, $CPPFLAGS,
$ CPPDEFFLAGS, $ FORTRANMODFLAG, and $ FORTRANI NCFLAGS construction variables are included
on this command line. See also $SHFORTRANCOM

SHFORTRANPPCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLI BEM TTER
Contains the emitter specification for the Shar edLi br ary builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

SHLI BNOVERSI ONSYMLI NKS
Instructsthe Shar edLi br ar y builder to not create symlinks for versioned shared libraries.

SHLI BPREFI X
The prefix used for shared library file names.

_SHLI BSONAMVE
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by Shar edLi br ar y builder when the linker tool supports SONAME (e.g. gnul i nk).

SHLI BSUFFI X
The suffix used for shared library file names.

SHLI BVERSI ON
When this construction variable is defined, a versioned shared library is created by the Shar edLi brary
builder. Thisactivatesthe$_SHLI BVERSI ONFLAGS and thus modifiesthe $SHLI NKCOMas required, adds the
version number to the library name, and creates the symlinks that are needed. $SHL1 BVERSI ON versions should
exist as alphanumeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLI BVERSI ONvaluesinclude'1', '1.2.3', and '1.2.gitaa412c8b'".

_SHLI BVERSI ONFLAGS
This macro automatically introduces extra flags to $SHLI NKCOMwhen building versioned Shar edLi br ary
(that is when $SHLI BVERSI ON is set). _ SHLI BVERSI ONFLAGS usually adds $SHLI BVERSI ONFLAGS
and some extra dynamically generated options (such as - W, - soname=$_SHL| BSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLI BVERSI ONFLAGS
Extraflags added to $SHLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used when
$SHLI BVERSI ONis set.

Iy
=== SCONS 256

SHLI NK
The linker for programs that use shared libraries. See also $LI NK for linking static objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $SHCXX to aspecific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLI NKCOM
The command line used to link programs using shared libraries. See also $L1 NKCOMfor linking static objects.

SHLI NKCOVBTR
The string displayed when programs using shared libraries are linked. If thisis not set, then $SHLI NKCOM (the
command line) is displayed. See also $L1 NKCOMBTR for linking static objects.

env = Environnment (SHLI NKCOVBTR = "Li nki ng shared $TARGET")

SHLI NKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain- | (or similar) options for linking with the libraries listed in $L1 BS, nor - L (or similar) include search
path options that scons generates automatically from $LI BPATH. See$_ LI BFLAGS above, for the variable that
expandsto library-link options, and $_ LI BDI RFLAGS above, for the variable that expandsto library search path
options. See also $LI NKFLAGS for linking static objects.

SHOBJPREFI X
The prefix used for shared object file names.

SHOBJ SUFFI X
The suffix used for shared object file names.

SONAMVE
Variable used to hard-code SONAME for versioned shared library/loadable module.

env. SharedLi brary('test', '"test.c', SHLIBVERSION="0.1.2', SONAME='Ili btest.so0.2")
Thevariableis used, for example, by gnul i nk linker tool.

SOURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project wasretrieved. Thisisused tofill inthe Sour ce:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSI ON
This will construct the SONAME using on the base library name (t est in the example below) and use specified
SOVERSI ONto create SONAME.

Iy
=== SCONS 257

env. SharedLi brary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSI ON='2')
The variableis used, for example, by gnul i nk linker tool.

In the example above SONAME would be |i bt est.so.2 which would be a symlink and point to
libtest.so.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must accept
five arguments:

def spawn(shell, escape, cnd, args, env):

shel | isastring naming the shell program to use, escape isafunction that can be called to escape shell special
characters in the command line, cnd is the path to the command to be executed, ar gs holds the arguments to
the command and env isadictionary of environment variables defining the execution environment in which the
command should be executed.

STATI C_AND_SHARED OBJECTS_ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objectsinto a shared library.

SUBST_DI CT
The dictionary used by the Substfil e or Textfil e builders for substitution values. It can be anything
acceptable tothedi ct () constructor, so in addition to adictionary, lists of tuples are also acceptable.

SUBSTFI LEPREFI X
The prefix used for Subst f i | e file names, an empty string by default.

SUBSTFI LESUFFI X
The suffix used for Subst f i | e file names, an empty string by default.

SUMVARY
A short summary of what the project is about. This is used to fill in the Sunmary: field in the controlling
information for Ipkg and RPM packages, and asthe Descri pti on: fieldin MSI packages.

See the Package builder.

SW G
The name of the SWIG compiler to use.

SW GCFI LESUFFI X
The suffix that will be used for intermediate C source files generated by SWIG. The default valueis' _wr ap
$CFI LESUFFI X' - that is, the concatenation of the string _wr ap and the current C suffix $CFl LESUFFI X.
By default, thisvalueisused whenever the - c++ option isnot specified as part of the $SW GFLAGS construction
variable.

SW GCOM
The command line used to call SWIG.

SW GCOMBTR
The string displayed when calling SWIG. If thisis not set, then $SW GCOM(the command line) is displayed.

SW GCXXFI LESUFFI X
The suffix that will be used for intermediate C++ source files generated by SWIG. The default value is
" wr ap$CXXFI LESUFFI X' - that is, the concatenation of the string _wr ap and the current C++ suffix

Iy
=== SCONS 258

$CXXFI LESUFFI X. By default, this value is used whenever the - c++ option is specified as part of the
$SW GFLAGS construction variable.

SW GDI RECTORSUFFI X
The suffix that will be used for intermediate C++ header files generated by SWIG. These are only generated for
C++ code when the SWIG 'directors feature isturned on. The default valueis_wr ap. h.

SW GFLAGS
General options passed to SWIG. Thisiswhere you should set the target language (- pyt hon, - per| 5, -tcl,
etc.) and whatever other options you want to specify to SWIG, such as the - c++ to generate C++ code instead
of C Code.

_SW G NCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $ SW G NCFLAGS is created by respectively
prepending and appending $SW G NCPREFI X and $SW G NCSUFFI X to the beginning and end of each
directory in $SW GPATH.

SW G NCPREFI X
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SW GPATH construction variable when the $_SW G NCFLAGS variableis
automatically generated.

SW G NCSUFFI X
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SW GPATH construction variable when the $_ SW G NCFLAGS variableis automatically
generated.

SW GOUTDI R
Specifies the output directory in which SWIG should place generated language-specific files. This will be used
by SCons to identify the files that will be generated by the SWIG call, and trandated intotheswi g - out di r
option on the command line.

SW GPATH
The list of directories that SWIG will search for included files. SCons SWIG implicit dependency scanner will
search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in $SW GFLAGS the result will be non-portable and the
directorieswill not be searched by the dependency scanner. Note: directory namesin $SW GPATHwill belooked-
up relative to the SConscript directory when they are used in a command. To force scons to lookup a directory
relative to the root of the source tree, use atop-relative path (#):

env = Environment (SW GPATH=" #/ i ncl ude')

The directory lookup can a so be forced using the Di r () function:

include = Dir('include')
env = Environnment (SW GPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ SW G NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SW G NCPREFI X and $SW G NCSUFFI X construction variables to the beginning and end of each directory
in $SW GPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SW d NCFLAGS:

Iy
=== SCONS 259

env = Environnent (SW GCOVE"ny_swi g -0 $TARGET $_SW A NCFLAGS $SOURCES")

SW GVERSI ON
The detected version string of the SWIG tool.

TAR
Thetar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOVSTR
The string displayed when archiving files using the tar archiver. If thisis not set, then $TARCOM (the command
line) is displayed.

env = Environnment (TARCOVSTR = "Archi vi ng $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution" for more information).

TARGET_ARCH
The name of the hardware architecture that objects created using this construction environment should target. Can
be set when creating a construction environment by passing as a keyword argument in the Envi r onnment call.

On the wi n32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. If avalueis not specified, will be set to the same value as $HOST _ARCH.
Changing the value after the environment isinitialized will not cause thetool to be reinitialized. Compiled objects
will bein the target architecture if the compilation system supports generating for that target. The latest compiler
which can fulfill the requirement will be selected, unless a different version is directed by the value of the
$MSVC_VERSI ON construction variable.

On the win32/msvc combination, valid target arch values are x86, ar m i 386 for 32-bit targets and and64,
ar nb4, x86_64 and i a64 (Itanium) for 64-bit targets. For example, if you want to compile 64-bit binaries,
you would set TARGET_ARCH=' x86_64" when creating the construction environment. Note that not all target
architectures are supported for all Visua Studio / MSVC versions. Check the relevant Microsoft documentation.

$TARCGET _ARCHis not currently used by other compilation tools, but the option is reserved to do so in future

TARCGET_OS
The name of the operating system that objects created using this construction environment should target. Can be
set when creating a construction environment by passing as a keyword argument in the Envi r onment call;.

$TARGET_GSisnot currently used by SCons but the option is reserved to do so in future

TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFI X
The suffix used for tar file names.

Iy
=== SCONS 260

TEMPFI LE

Holds a callable object which will be invoked to transform long command lines (string or list) into an aternate
form. Length limits on various operating systems may cause long command linesto fail when calling out to ashell
to run the command. Most often affects linking, when there are many object files and/or libraries to be linked,
but may also affect other compilation steps which have many arguments. STEMPFI LE is not called directly, but
rather istypically embedded in another construction variable, to be expanded when used. Example:

env[" TEMPFI LE"] = TenpFi | eMunge
env["LINKCOM'] = "${ TEMPFI LE("' $LI NK $TARGET $SOURCES' , ' $LI NKCOVSTR) }*

The SCons default value for STEMPFI LE, TenpFi | eMunge, performs command substitution on the passed
command line, calculates whether modification is needed, then puts all but the first word (assumed to be the
command name) of the resulting list into a temporary file (sometimes called a response file or command file),
and returns a new command line consisting of the the command name and an appropriately formatted reference
to the temporary file.

A replacement for the default tempfile object would need to do fundamentally the same thing, including
taking into account the values of $MAXLI NELENGTH, $TEMPFI LEPREFI X, $TEMPFI LESUFFI X,
$TEMPFI LEARGAIO N, $TEMPFI LEDI R and $TEMPFI LEARGESCFUNC. If a particular use case requires a
different transformation than the default, it is recommended to copy the mechanism and define anew construction
variable and rewrite the relevant * COM variable(s) to use it, to avoid possibly disrupting existing uses of
$TEMPFI LE.

TEMPFI LEARGESCFUNC

Thedefault argument escapefunctionisSCons. Subst . quot e_spaces. If you need to apply extraoperations
on acommand argument (to fix Windows slashes, normalize paths, etc.) before writing to the temporary file, you
can set the STEMPFI LEARGESCFUNC variable to a custom function. The function must accept a single string
argument and and return a new string with any modifications applied. Example:

i mport sys
i mport re
from SCons. Subst inport quote_spaces

W NPATHSEP_RE = re.conpile(r"\\([A\""\\]|$)")

def tenpfile_arg esc func(arg):
arg = quote_spaces(arQg)
if sys.platform!= "w n32":
return arg
GCC requires double Wndows slashes, let's use UN X separ at or
return W NPATHSEP_RE. sub(r"/\ 1", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

TEMPFI LEARGIO N

The string to use to join the arguments passed to $TEMPFI LE when the command line exceeds the limit set by
$MAXLI NELENGTH. The default value is a space. However for MSVC, MSLINK the default is a line separator
asdefined by os. | i nesep. Note thisvalueis used literally and not expanded by the subst logic.

TEMPFI LEDI R

The directory to create the long-lines temporary file in. If unset, the Python t enpf i | e module chooses the
directory based onthe TMPDI R, TEMP or TMP environment variables. If the default path causes processing errors,
set $TEMPFI LEDI R to a safer aternative. For example, on Windows, the default temporary file path contains

~

'—‘-‘ SCONS 261

the username. If the username contains non-7-bit-ASCII characters, there may decoding errors opening the path
to the temporary file. See also $TEMPFI LEENCODI NG

TEMPFI LEENCODI NG
By default, thelong-linestemporary file (aka'responsefile") created by the STEMPFI LE function will beencoded
inthe Python default encoding, UTF-8. If the external command which readsthe responsefile encounters decoding
errors (usualy, if that command depends on Windows legacy code pages, and a pathname in the response file
or the response file path itself cannot be represented in the 7-bit ASCII characer set), set this variable to the
appropriate codec. See also STEMPFI LEDI R.

New in version 4.10.0

TEMPFI LEPREFI X
The prefix for the name of the temporary file used to store command lines exceeding $MAXLI NELENGTH. The
prefix must include the compiler syntax to actually include and process the file. The default prefix is' @ , which
worksfor the Microsoft Visual C++ and GNU tool chains on Windows. Set this appropriately for other toolchains,
for example' - @ for the diab compiler or' - vi @' for ARM toolchain.

TEMPFI LESUFFI X
The suffix for the name of the temporary file used to store command lines exceeding $MAXLI NELENGTH. The
suffix should include the dot (.") if one is needed as it will not be added automatically. The default is. | nk.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOVSTR
The string displayed when calling the TeX formatter and typesetter. If thisisnot set, then $TEXCOM(the command
line) is displayed.

env = Envi ronnent (TEXCOVMBTR = "Bui | di ng $TARCGET from TeX i nput $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXI NPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFI LEPREFI X
The prefix used for Text f i | e file names, an empty string by default.

TEXTFI LESUFFI X
The suffix used for Text f i | e filenames; . t xt by default.

TOOLS
A list of the names of the Tool specification modules that were actually initialized in the current construction
environment. This may be useful as adiagnostic aid to seeif atool did (or did not) run. The value is informative
and is not guaranteed to be complete.

UNCHANGED _SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

Iy
=== SCONS 262

UNCHANGED TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor : field in the
controlling information for RPM packages, and the Manuf act ur er: field in the controlling information for
MSI packages.

See the Package builder.

VERSI ON
The version of the project, specified as a string.

See the Package builder.

VSWHERE
Specify the location of vswher e.exe.

The vswher e.exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017 edition,
but isalso available asastandaloneinstallation. It allows queriesto obtain detailed information about install ations
of 2017 and later editions. SCons makes use of this information to determine the state of compiler support for
those editions.

Setting the $VSWHERE variable to the path to a specific vswhere.exe binary causes SCons to use that binary. If
not set, SCons will search for one, looking in the following locations in order, using the first found ($VSWHERE
is updated with the location):

9%°r ogr anfi | es(x86) % M crosoft Visual Studio\lnstaller
9%r ogranti | es% M crosoft Visual Studio\lnstaller
%Chocol ateyl nstal |l % bin

% OCALAPPDATA% M cr osof t \ W nGet \ Li nks

%JSERPRCOFI LE% scoop)\ shi ns

Y%SCOOP% shi ns

Note

Inorder to take effect, $VSWHERE must be set beforetheinitial Microsoft Visual C++ compiler discovery
takes place. Discovery happens, at the latest, during thefirst call tothe Envi r onnent function, unless
at ool s list is specified which excludes the entire Microsoft Visual C++ toolchain - that is, omits
"def aul t s" and any specific tool modulethat refersto parts of thetoolchain (msvc, sl i nk, masm
nm dl and msvs). In this case, detection is deferred until any one of those tool modules is invoked
manually. The following two examplesillustrate this:

VSWHERE set as Environnent is created
env = Environment (VSWHERE=' c: / ny/ pat h/ t o/ vswhere')

Initialization deferred with enpty tools, triggered manually
env = Environment (tool s=[])

env['VSWHERE' | = r'c:/ny/vswhere/install/l ocation/vswhere. exe
env. Tool (" msvc')

env. Tool (" msl i nk")

env. Tool (" nBvsS')

Iy
=== SCONS 263

W NDOWS_EMBED MANI FEST
Set to Tr ue to embed the compiler-generated manifest (normally ${ TARGET} . mani f est) into al Windows
executables and DLLs built with this environment, as a resource during their link step. Thisis done using $Mr
and SMTEXECOMand $MTSHLI BCOM See also $W NDOWS_| NSERT _MANI FEST.

W NDOWE_| NSERT_DEF
If set totrue, alibrary build of aWindowsshared library (. dI | file) will include areference to the corresponding
module-definition file at the same time, if amodule-definition fileis not already listed asabuild target. The name
of the module-definition file will be constructed from the base name of the library and the construction variables
$W NDOWSDEFSUFFI X and $W NDOWSDEFPREFI X. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the devel oper.

W NDOWS_| NSERT_MANI FEST
If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $W NDOASPROGVANI FESTSUFFI X and $W NDOWSPROGVANI FESTPREFI X. Inthe case
of a shared library, the manifest file name is constructed using $W NDOASSHLI BMANI FESTSUFFI X and
$W NDOWSSHLI BMANI FESTPREFI X. See also $W NDOW5s_EMBED MANI FEST.

W NDOWSDEFPREFI X
The prefix used for a Windows linker module-definition file name. Defaults to empty.

W NDOWSDEFSUFFI X
The suffix used for a Windows linker module-definition file name. Defaultsto . def .

W NDOWSEXPPREFI X
The prefix used for Windows linker exports file names. Defaults to empty.

W NDOWBEXPSUFFI X
The suffix used for Windows linker exports file names. Defaultsto . exp.

W NDOWNSPROGVANI FESTPREFI X
The prefix used for executable program manifest files generated by Microsoft Visual C++. Defaults to empty.

W NDOWSPROGVANI FESTSUFFI X
The suffix used for executable program manifest files generated by Microsoft Visual C++. Defaults to
. mani f est .

W NDOWESHLI BMANI FESTPREFI X
The prefix used for shared library manifest files generated by Microsoft Visual C++. Defaults to empty.

W NDOASSHLI BMANI FESTSUFFI X
The suffix used for shared library manifest files generated by Microsoft Visual C++. Defaultsto . mani f est .

X_1 PK_DEPENDS
Thisisused to fill inthe Depends: field in the controlling information for |pkg packages.

Seethe Package builder.

X_| PK_DESCRI PTI ON
Thisis used to fill in the Descri pti on: field in the controlling information for Ipkg packages. The default
vaueis“$SUMVARY\n$ DESCRI PTI ON'

X_I PK_MAI NTAI NER
Thisisused to fill inthe Mai nt ai ner : field in the controlling information for |pkg packages.

X IPK_PRIORI TY
Thisisusedtofill inthePri ori ty: fieldinthe controlling information for | pkg packages.

Iy
=== SCONS 264

X_| PK_SECTI ON
Thisisusedto fill inthe Sect i on: field in the controlling information for |pkg packages.

X_MBI _LANGUAGE
Thisisused to fill inthe Language: attribute in the controlling information for MSI packages.

See the Package builder.

X_MBI _LI CENSE_TEXT
Thetext of the softwarelicensein RTF format. Carriage return characterswill bereplaced with the RTF equivalent
\\par.

See the Package builder.

X_MS| _UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
Thisisused to fill inthe Aut oReqPr ov: fieldinthe RPM . spec file.

See the Package builder.

X _RPM BUI LD
internal, but overridable

X_RPM BUI LDREQUI RES
Thisisused to fill inthe Bui | dRequi r es: fieldinthe RPM . spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM BUI LDROCT
internal, but overridable

X _RPM CLEAN
internal, but overridable

X_RPM _CONFLI CTS
Thisisusedtofill intheConf |l i cts: fieldinthe RPM . spec file.

X_RPM DEFATTR
Thisvalueis used as the default attributes for the files in the RPM package. The default valueis*“ (-,root,root)”.

X_RPM DI STRI BUTI ON
Thisisusedtofill intheDi stri buti on: fieldinthe RPM . spec file.

X_RPM_EPCCH
Thisisusedto fill inthe Epoch: fieldinthe RPM . spec file.

X_RPM_EXCLUDEARCH
Thisisusedto fill inthe Excl udeAr ch: fieldinthe RPM . spec file.

X_RPM_EXLUSI VEARCH
Thisisused to fill inthe Excl usi veAr ch: fieldinthe RPM . spec file.

X_RPM_EXTRADEFS
A list used to supply extra definitions or flags to be added to the RPM . spec file. Each item is added as-is
with a carriage return appended. Thisis useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Note if this variable is omitted, SCons will by default supply the value' %gl obal

Iy
=== SCONS 265

debug _package % ni | }' todisabledebug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line.

New in version 3.1.

env. Package(
NAMVE="f 00",

X_RPM_EXTRADEFS=[
"%defi ne _unpackaged files termnnate build O"
"0define _mssing_doc files term nate build 0"
] 1
)

X_RPM_GROUP
Thisisused tofill inthe Gr oup: fieldinthe RPM . spec file.

X_RPM _GROUP_I ang
Thisisused tofill intheGr oup(| ang) : fieldinthe RPM . spec file. Notethat | ang isnot literal and should
be replaced by the appropriate language code.

X _RPM | CON
Thisisusedtofill inthel con: fieldinthe RPM . spec file.

X RPM | NSTALL
internal, but overridable

X_RPM_PACKAGER
Thisisused tofill inthe Packager : fieldinthe RPM . spec file

X_RPM _POSTI NSTALL
Thisisused to fill inthe %post : sectioninthe RPM . spec file.

X_RPM_POSTUNI NSTALL
Thisisused tofill inthe %post un: sectioninthe RPM . spec file.

X_RPM PREFI X
Thisisusedtofill inthe Pr ef i x: fieldinthe RPM . spec file.

X_RPM _PREI NSTALL
Thisisused tofill inthe %pr e: sectioninthe RPM . spec file.

X _RPM PREP
internal, but overridable

X_RPM_PREUNI NSTALL
Thisisused tofill inthe %pr eun: sectioninthe RPM . spec file.

X_RPM _PROVI DES
Thisisusedto fill inthe Pr ovi des: fieldinthe RPM . spec file.

X_RPM REQUI RES
Thisisused tofill inthe Requi r es: fieldinthe RPM . spec file

X_RPM _SERI AL
Thisisusedtofill inthe Seri al : fieldinthe RPM . spec file.

Iy
=== SCONS 266

X_RPM_URL
Thisisusedtofill intheUr | ; fieldinthe RPM . spec file.

XCGETTEXT
Path to xgettext(1) program (found viaDet ect ()). Seexget t ext tool and POTUpdat e builder.

XCGETTEXTCOM
Complete xgettext command line. See xget t ext tool and POTUpdat e builder.

XGETTEXTCOVSTR
A string that is shown when xgettext(l) command is invoked (default:
$XGETTEXTCOM'). Seexget t ext tool and POTUpdat e builder.

, which means "print

_XGETTEXTDOVAI N
Internal "macro”. Generates xgettext domain name form source and target (default:
" ${ TARGET. fi | ebase}").

XCGETTEXTFLAGS
Additional flags to xgettext(1). See xget t ext tool and POTUpdat e builder.

XCGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFI LES. i n so they
will in most cases set XGETTEXTFROME" POTFI LES. i n" here. The $XGET TEXTFROM(files have same syntax
and semantics as the well known GNU POTFI LES. i n. Seexget t ext tool and POTUpdat e builder.

_ XGETTEXTFROMFLAGS
Internal "macro”. Generates list of - D<di r > flags from the $XGETTEXTPATH list.

XCGETTEXTFROVPREFI X
Thisflag is used to add single $XGETTEXTFROM(file to xgettext(1)'s command line (default: ' - f ').

XGETTEXTFROVBUFFI X
(default: " *)

XCGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
Seealso xget t ext tool and POTUpdat e builder.

_XGETTEXTPATHFLAGS
Internal "macro”. Generates list of - f <f i | e> flags from $XGETTEXTFROM

XGETTEXTPATHPREFI X
Thisflag is used to add single search path to xgettext(1)'s command line (default: ' - D').

XGETTEXTPATHSUFFI X
(default: ')

YACC
The parser generator.

YACC_GRAPH_FI LE
If supplied, write a graph of the automaton to afile with the name taken from this variable. Will be emitted as a
- - gr aph= command-line option. Use thisin preference to including - - gr aph=in $YACCFLAGS directly.

Iy
=== SCONS 267

New in version 4.4.0.

YACC_GRAPH_FI LE_SUFFI X
Previously specified by $YACCVCGFI LESUFFI X.

The suffix of the file containing a graph of the grammar automaton when the - g option (or - - gr aph= without
an option-argument) isused in $YACCFLAGS. Note that setting this variable informs SCons how to construct the
graph filename for tracking purposes, it does not affect the actual generated filename. Various yacc tools have
emitted various formats at different times. Set this to match what your parser generator produces.

New in version 4.6.0.

YACC_HEADER FI LE
If supplied, generate a header file with the name taken from this variable. Will be emitted as a - - header =
command-line option. Use thisin preference to including - - header = in $YACCFLAGS directly.

New in version 4.4.0.

YACCCOM
The command line used to call the parser generator to generate a sourcefile.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If thisis not set, then $YACCCOM
(the command line) is displayed.

env = Environnent (YACCCOMSTR="Yacc' i ng $TARGET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. In addition to passing the value on during invocation, the yacc
tool also examines this construction variable for options which cause additional output files to be generated, and
adds those to the target list.

If the- d optionispresent in $YACCFLAGS scons assumesthat the call will aso create aheader filewith the suffix
defined by $YACCHFI LESUFFI X if the yacc source file endsin a. y suffix, or a file with the suffix defined
by $YACCHXXFI LESUFFI X if the yacc source fileendsin a. yy suffix. The header will have the same base
name asthe requested target. Thisisonly correct if the executable isbison (or win_hison). If using Berkeley yacc
(byacc), y. t ab. h isawayswritten - avoid the - d in this case and use $YACC HEADER FI LE instead.

If a- g option is present, scons assumes that the call will also create a graph file with the suffix defined by
$YACCVCGFI LESUFFI X.

If a- v optionispresent, sconsassumesthat the call will also create an output debug filewith the suffix . out put .

Also recognized are GNU hison options- - header (and itsdeprecated synonym - - def i nes), whichissimilar
to - d but gives the option to explicitly name the output header file through an option argument; and - - gr aph,
which issimilar to - g but gives the option to explicitly name the output graph file through an option argument.
The file suffixes described for - d and - g above are not applied if these are used in the option=argument form.

Note that files specified by - - header = and - - gr aph= may not be properly handled by SCons in all
situations, and using those in $YACCFLAGS should be considered legacy support only. Consider using
$YACC_HEADER FI LE and $YACC_GRAPH_FI LE instead if the files need to be explicitly named (new in
version 4.4.0).

YACCHFI LESUFFI X
The suffix of the C header file generated by the parser generator when the - d option (or - - header without an
option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the

Iy
=== SCONS 268

header filename for tracking purposes, it does not affect the actual generated filename. Set thisto match what your
parser generator produces. The default valueis. h.

YACCHXXFI LESUFFI X
The suffix of the C++ header file generated by the parser generator when the - d option (or - - header without
an option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the
header filename for tracking purposes, it does not affect the actual generated filename. Set thisto match what your
parser generator produces. The default valueis. hpp.

YACCVCGHI LESUFFI X
Obsoleted. Use $YACC GRAPH FI LE _SUFFI X instead. The wvalue is used only if
$YACC_GRAPH_FI LE_SUFFI Xisnot set. The default valueis. gv.

Changed in version 4.6.0: deprecated. The default value changed from . vcg (bison stopped generating . vcg
output with version 2.4, in 2006).

ZIP
The zip compression and file packaging utility.

ZI P_OVERRI DE_TI MESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
Thisis atuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZI PCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

Z| PCOVPRESSI ON
The conpr essi on flag from the Python zi pfi | e module used by the internal Python function to control
whether the zip archive is compressed or not. The default valueiszi pfi | e. ZI P_DEFLATED, which createsa
compressed zip archive. Thisvalue has no effect if the zi pfi | e moduleis unavailable.

ZI PCOVBTR
The string displayed when archiving files using the zip utility. If thisis not set, then $ZI PCOM (the command
line or internal Python function) is displayed.

env = Environnent (ZI PCOVSTR = "Zi ppi ng $TARGET")

Zl PFLAGS
General options passed to the zip utility.

ZI PROOT
Anoptional zip root directory (default empty). The filenames stored in the zip filewill berelativeto thisdirectory,
if given. Otherwise, the filenames are relative to the current directory of the command. For instance:

env = Environment ()
env. Zi p(' foo.zip', 'subdirl/subdir2/filel", ZlI PROOT='subdirl")

will produce a zip file f 00. zi p containing a file with the name subdi r 2/ fi | el rather than subdi r 1/
subdir2/filel.

ZI PSUFFI X
The suffix used for zip file names.

Iy
=== SCONS 269

Appendix B. Builders

This appendix contains descriptions of all of the Builders that are potentially available "out of the box" in thisversion
of SCons.

CFile()

env.CFi | e()
Builds a C source file given alex (. |) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env. CFil e(target='foo.c', source=foo.l")

builds bar.c
env. CFil e(target ="' bar', source='bar.y')

Command()

env.Conmand()
There is actually no Builder named Conmrand, rather the term "Command Builder" refers to a function which,
on each call, creates and calls an anonymous Builder. Thisis useful for "one-off" builds where a full Builder is
not needed. Since the anonymous Builder is never hooked into the standard Builder framework, an Action must
always be specified. See the Conmand function description for the calling syntax and details.

Conpi | at i onDat abase()

env.Conpi | ati onDat abase()
Conpi | at i onDat abase is a specia builder which adds a target to create a JSON formatted
compilation database compatible with cl ang tooling (see the LLVM specification [https://clang.llvm.org/docs/
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COVPI LATI ONDB_PATH_FI LTER. Thetarget is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to atarget name of conpi | e_comrands. j son.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple

sources, the source list will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the conpi | at i on_db tool prior to specifying any part of your build or some source/
output fileswill not show up in the compilation database.

Available since scons 4.0.

Iy
=== SCONS 270

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

CXXFi | e()
env.CXXFi | e()

Builds a C++ source file given a lex (.11) or yacc (.yy) input file. The suffix specified by the
$CXXFI LESUFFI X construction variable (. cc by default) isautomatically added to the target if it isnot already
present. Example;

builds foo.cc
env. CXXFi | e(target =" foo.cc', source='"foo.ll")

builds bar.cc
env. CXXFi | e(target ="' bar', source='bar.yy')

DocbookEpub()
env.DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environnent (t ool s=["' dochook'])
env. DocbookEpub(' manual . epub', ' manual . xm ")

or simply

env = Environment (t ool s=[' docbhook'])
env. DocbookEpub(' nmanual ')

DochookHt m ()
env.DocbookHt i ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environnent (t ool s=[' dochook'])
env. DocbookHt ml (' manual . htm ', ' manual . xm ')

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' nanual ')

DocbookHt m Chunked()

env.DocbookHt m Chunked()
A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base. di r
parameter. The chunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt M Chunked(' manual ')

wheremanual . xnl istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt M Chunked(' mymanual . html ', ' nmanual', xsl='htnl chunk. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to al the created filenames:

env = Environment (t ool s=[' docbook'])

Iy
=== SCONS 271

env. DocbookHt m Chunked(' manual ', xsl ="htm chunk. xsl', base dir="output/")
Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p()
env.DocbookHt m hel p()
A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

wheremanual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt M hel p(' mymanual . ht Ml ', ' nmanual ', xsl='htnl hel p. xsl ")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ', xsl="htm hel p. xsl', base_dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbhookMan()
A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (tool s=[' dochook'])
env. DocbookMan(' manual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

DocbookPdf ()
env.DocbookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environnent (t ool s=[' dochook'])
env. DocbookPdf (' manual . pdf', ' panual .xm ")

or simply

env = Environnent (t ool s=["' dochook'])
env. DocbookPdf (* manual ')

DocbookSl i desH m ()
env.DocbookSl i desHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML slides output.

env = Environment (t ool s=[' dochook'])
env. DocbookSl i desHt m (' nanual ')

If youusethetit| efoil.htnl parameter in your own stylesheets you have to give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

Iy
=== SCONS 272

env = Environment (t ool s=[' docbook'])
env. DocbookSl i desHt m (' mymanual . ht ', " manual ', xsl="slideshtm .xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])

env. DocbookSl i desHt M (' manual ', xsl='slideshtm .xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf ()
env.DochookSl i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF dlides output.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desPdf (' nanual ')

DocbookXI ncl ude()
env.DochookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environment (t ool s=[' docbhook'])
env. DocbookXI ncl ude(*' manual _xi ncl uded. xm ', ' manual . xm ")

DocbookXsl t ()
env.DocbookXsl t ()
A pseudo-Builder, applying a given XSL transformation to the input file.

env = Environnent (t ool s=[' dochook'])
env. DocbookXsl t (' manual _transformed. xm ', 'manual .xm ', xsl="transformxslt')

Note, that this builder requiresthe xs| parameter to be set.

DVI ()

env.DVI ()
Buildsa. dvi filefroma.tex,.|txor. | atexinputfile. If thesourcefilesuffixis. t ex, sconswill examine
the contents of the file; if the string \ docunent cl ass or \ docunent st yl e isfound, the file is assumed
to bealaTeX fileand the target is built by invoking the SLATEXCOMcommand line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start $MAKEI NDEX to
generate an index if a. i nd file isfound and will examine the contents . | og file and re-run the SLATEXCOM
command if the log file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex
env.DVI (target = 'aaa.dvi', source = 'aaa.tex')
bui | ds bbb. dvi

Iy
=== SCONS 273

env. DVI (target = 'bbb', source = 'bbb.ltx")
builds fromccc. | atex
env. DVI (target = 'ccc.dvi', source = 'ccc.latex')

Gs()

env.Gs()
A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos?
and gswin32c are tried.

env = Environnment (tool s=['gs'])
env. Gs(

'cover.jpg',

' scons-scons. pdf',

GSFLAGS=' - dNOPAUSE - dBATCH - sDEVI CE=j peg - dFi rst Page=1 -dLast Page=1 -q',
)

Install ()

env.Install ()
Installs one or more sourcefiles or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
asastring or as a node returned by a builder.

env.Install (target="/usr/local/bin', source=['foo', 'bar'])

Note that if target paths chosen for the Install builder (and the related I nstall As and
I nst al | Ver si onedLi b builders) are outside the project tree, such asin the example above, they may not be
selected for "building" by default, sincein the absence of other instructions scons buildstargetsthat are underneath
the top directory (the directory that containsthe SConst r uct file, usualy the current directory). Use command
line targets or the Def aul t function in this case.

Ifthe- - i nst al | - sandbox command lineoptionisgiven, thetarget directory will be prefixed by the directory
path specified. Thisis useful to test installation behavior without installing to a"live" location in the system.

SeeasoFi ndl nst al | edFi | es. For morethoughtson installation, seethe User Guide (particul arly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

I nstall As()

env.l nstal |l As()
Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of filesor directories.

env.Install As(target="/usr/l ocal /bin/foo',
sour ce='f oo_debug')

env.Install As(target=['../lib/libfoo.a, "../lib/libbar.a'],
source=['libFOO a', 'libBAR a'])

Seethenoteunder | nst al | .

I nstal | VersionedLi b()

env.l nst al | Versi onedLi b()
Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on
symlinks of the source library.

Iy
=== SCONS 274

env. I nst al | Ver si onedLi b(target="'/usr/|ocal/bin/foo
source='1l1ibxyz.1.5.2.s0")

Seethe noteunder | nst al | .

Jar ()

env.Jar ()
Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be
searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass filesby calling the
Java Builder.

If the $J ARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefile is assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar',
source = ['barl.java', 'bar2.java'])
Java()
env.Javal()

Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
trees which will be scanned for . j ava files.

SConswill parse each source. j ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed underneath the
specified target directory.

SConswill aso search each Javafilefor the Java package name, which it assumes can be found on aline beginning
with the string package in the first column; the resulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, the file Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate a corresponding sub/ di r/ Foo. cl ass classfile.

Examples:

env. Java(target='cl asses', source='src')
env. Java(target='cl asses', source=['srcl', 'src2'])
env. Java(target='cl asses', source=['Filel.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compilesin ssmple ASCII mode
by default, the compiler will generate warnings about unmappable characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portability, it's best if the encoding is hard-coded, so that the compilation works when run
on a system with a different encoding.

env = Environment ()

Iy
=== SCONS 275

env[' ENV']['LANG] = 'en_GB.UTF-8'

JavaH()

env.JavaH()
Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain al of the definitions. The source
can be the names of . cl ass files, the names of . j ava filesto be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $J AVACLASSDI Risset, either inthe environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:
builds java_native.h
cl asses = env.Java(target="classdir", source="src")

env. JavaH(t arget ="j ava_native. h", source=cl asses)

buil ds i nclude/ package_foo. h and incl ude/ package_bar. h
env. JavaH(t arget ="i ncl ude", source=["package/foo.cl ass", "package/bar.class"])

buil ds export/foo.h and export/bar.h

env. JavaH(
target ="export",
source=["cl asses/foo. cl ass", "classes/bar.class"],

JAVACLASSDI R="cl| asses",

Note

Java versions starting with 10.0 no longer use the javah command for generating JNI headers/
sources, and indeed have removed the command entirely (see Java Enhancement Proposa JEP
313 [https.openjdk.java.net/jeps/313]), making this tool harder to use for that purpose. SCons may
autodiscover a javah belonging to an older release if there are multiple Java versions on the system,
which will lead to incorrect results. To use with anewer Java, override the default values of $J AVAH (to
contain the path to thejavac) and $J AVAHFLAGS (to contain at least a- h flag) and note that generating
headers with javac requires supplying source.. j ava filesonly, not. cl ass files.

Li brary()
env.Li brary()
A synonym for the St at i cLi br ar y builder method.

Loadabl eModul e()

env.Loadabl eModul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

M ()

env.M4()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

Iy
=== SCONS 276

https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc ()

env.Moc()
Builds an output file from a moc input file. moc input files are either header files or C++ files. This builder is
only available after using the tool gt 3. See the $QT3DI R variable for more information. Example:

env. Moc(' foo. h') # generates noc_foo.cc
env. Moc(' foo.cpp') # generates foo.noc

MOFi | es()

env.MOFi | es()
Thisbuilder is set up by thensgf nt tool. The builder compiles POfilesto MOfiles. MOFi | es isasingle-source
builder. The sour ce parameter can also be omitted if $LI NGUAS_FI LE is set.

Example 1. Create pl . no and en. no by compiling pl . po and en. po:

env. MOFiles(['pl', 'en'])

Example 2. Compilefiles for languages defined in L1 NGUAS file:

env. MOFi | es(LI NGUAS _FI LE=Tr ue)

Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUAS file:

env. MOFiles(['"pl"', "en'], LINGUAS FILE=True)

Example 4. Compile files for languages defined in LI NGUAS file (another version):

env['LINGUAS FILE] = True
env. MOFi | es()

MBVSPr oj ect ()
env.MSVSPr oj ect ()
Build a Microsoft Visual C++ project file and solution file.

Builds a Microsoft Visual C++ project file based on the version of Visua Studio (or to be more precise, of
MSBuild) that is configured: either the latest installed version, or the version specified by $MSVC_VERSI ONin
the current construction environment. For Visual Studio 6.0 a. dsp fileis generated. For Visual Studio versions
2002-2008, a. vcpr oj fileisgenerated. For Visual Studio 2010 and later a. vexpr oj fileis generated. Note
there are multiple versioning schemes involved in the Microsoft compilation environment - see the description of
$MSVC_VERSI ONfor equivalences. Note SCons does not know how to construct project filesfor other languages
(eg..csproj for C#, . vbproj for Visual Basicor . pypr oj ect for Python).

For the . vcxproj file, the underlying format is the MSBuild XML Schema, and the details conform
to: https://learn.microsoft.com/en-us/cpp/build/reference/vexproj-file-structure [https://learn.microsoft.com/en-
us/cpp/build/referencelvexproj-file-structure]. The generated solution file enables Visual Studio to understand the
project structure, and allows building it using MSBuild to call back to SCons. The project file encodes a tool set
version that has been selected by SCons as described above. Since recent Visua Studio versions support multiple
concurrent toolsets, use $MSVC_VERSI ON to select the desired oneiif it does not match the SCons default. The

Iy
=== SCONS o77

https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure
https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure
https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure

project file also includes entries which describe how to call SCons to build the project from within Visual Studio
(or from an MSBuild command line). In some situations SCons may generate this incorrectly - notably when
using the scons-local distribution, which is not installed in a way that that matches the default invocation line.
If so, the $SCONS_HOME construction variable can be used to describe the right way to locate the SCons code
so that it can be imported.

By default, a matching solution file for the project is also generated. This behavior may be disabled by specifying
aut o_bui | d_sol uti on=0 to the MSVSPr oj ect builder. The solution file can aso be independently
generated by calling the MSVSSol ut i on builder, such as in the case where a solution should describe multiple
projects. See the M5VSSol ut i on description for further information.

The MSVSPr oj ect builder accepts severa keyword arguments describing lists of filenames to be placed into
the project file. Currently, srcs, i ncs, | ocal i ncs, resour ces, and m sc are recognized. The names are
intended to be self-explanatory, but note that the filenames need to be specified as strings, not as SCons File Nodes
(for example if you generate files for inclusion by using the @ ob function, the results should be converted to a
list of strings before passing them to MSVSPr oj ect). Thisisbecause Visual Studio and M SBuild know nothing
about SCons Node types. Each of thefilenamelistsareindividually optional, but at |east one list must be specified
for the resulting project file to be non-empty.

In addition to the above lists of values, the following values may be specified as keyword arguments:

tar get
The name of the target . dsp or . vcproj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPRQJECTSUFFI X construction variable will be defined to the correct value (see
exampl e below).

vari ant
The name of this particular variant. Except for Visual Studio 6 projects, this can also be a list of variant
names. These aretypically things like "Debug"” or "Release”, but really can be anything you want. For Visual
Studio 7 projects, they may also specify atarget platform separated from the variant name by a| (vertical
pipe) character: Debug| Xbox. The default target platform isWin32. Multiple callsto MSVSPr oj ect with
different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cndar gs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to al variants.

cppdefi nes
Preprocessor definitions for the different variants. The number of cppdef i nes entries must match the
number of vari ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
$CPPDEFI NES entry for all variants.

cppfl ags
Compiler flagsfor thedifferent variants. If a/ st d: c++flagisfoundthen/ Zc: __ cpl uspl us isappended
to the flags if not already found, this ensures that Intellisense uses the / st d: c++ switch. The number of
cppf | ags entriesmust match the number of var i ant entries, or be empty (not specified). If you give only
one, it will automatically be propagated to all variants. If you don't give this parameter, SCons will combine
the invoking environment's $CCFLAGS, $CXXFLAGS, $CPPFLAGS entries for all variants.

cpppat hs
Compiler include paths for the different variants. The number of cpppat hs entries must match the number
of vari ant entries, or be empty (not specified). If you give only one, it will automatically be propagated

Iy
=== SCONS 278

to all variants. If you don't give this parameter, SCons will use the invoking environment's $CPPPATH entry
for all variants.

bui | dt ar get
An optional string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entries must match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Microsoft Visual C++ project file. If this is not specified, the default is the
same as the specified bui | dt ar get value.

Note

SCons and Microsoft Visual Studio understand projectsin different ways, and the mapping is sometimes
imperfect:

Because SCons always executes its build commands from the directory in which the SConst r uct file
islocated, if you generate a project file in a different directory than the directory of the SConst r uct
file, users will not be able to double-click on the file name in compilation error messages displayed in
the Visual Studio console output window. This can be remedied by adding the Microsoft Visual C++ /
FC compiler option to the $CCFLAGS variable so that the compiler will print the full path name of any
files that cause compilation errors.

If the project fileisonly used to teach the Visual Studio project browser about thefile layout there should
be no issues, However, Visual Studio should not be used to make changes to the project structure, build
options, etc. asthesewill (a) not feed back to the SCons description of the project and (b) belost if SCons
regenerates the project file. The SConscript files should remain the definitive description of the build.

If the project file is used to drive MSBuild (such as selecting "build" from the Visual Studio interface)
you lose the direct control of target selection and command-line options you would have if launching
the build directly from SCons, because these will be hard-coded in the project file to the val ues specified
in the MSVSPr oj ect call. You can regain some of this control by defining multiple variants, using
multiple MSVSPr oj ect callsto arrange different build targets, arguments, defines, flags and paths for
different variants.

If the build is divided into a solution with multiple M SBuild projects the mapping is further strained. In
this case, it isimportant not to set Visual Studio to do parallel builds, asit will then launch the separate
project builds in parallel, and SCons does not work well if called that way. Instead, you can set up the
SCons build for paralel building - see the Set Opt i on function for how to do thiswith num j obs.

Example usage:

barsrcs = ['bar.cpp']

barincs = ['bar.h']
barl ocal i ncs = [' St dAf x. h']
barresources = ['bar.rc', 'resource.h']

barm sc = [' bar_readne. txt']

dl I = env. SharedLi brary(target="bar.dll"', source=barsrcs)
buildtarget = [s for s in dll if str(s).endswith('dlI[")]
env. MBVSPr oj ect (

target='Bar' + env[' MSVSPRQIECTSUFFI X],

srcs=bar srcs,

Iy
=== SCONS 279

i ncs=bari ncs,

| ocal i ncs=bar | ocal i ncs,
r esour ces=barr esour ces,
m sc=barm sc

bui | dt ar get =bui | dt ar get ,
vari ant =' Rel ease',

DebugSet ti ngs
A dictionary of debug settings that get written to the . vcproj . user or the . vexpr oj . user file,
depending on the version installed. As for cndar gs, you can specify a DebugSet t i ngs dictionary per
variant. If you give only one, it will be propagated to al variants.

Changed in version 2.4: Added the optional DebugSet t i ngs parameter.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with
the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Assum ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')
msvcver = vars.args.get('vc', '9')

Check command args to force one M crosoft Visual Studio version
if nmsvcver == '9' or nmsvcver == '11':

env = Environment (M5SVC _VERSI ON=nsvcver + '.0', MSVC BATCH=Fal se)
el se:

env = Environment ()

AddOpt i on(
"--userfile',
action="'store_true',
dest="userfile',
def aul t =Fal se,
hel p="Create Visual Ct+ project file",

)

#
1. Configure your Debug Setting dictionary with options you want in the |ist
of allowed options, for instance if you want to create a user file to | aunch
a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):
#
V9DebugSet ti ngs = {

"Command' @ ' c:\\myapp\\using\\thisdll.exe",

"WorkingDirectory': "c:\\nyapp\\using\\",

' CommandAr gunents': ' -p password',

'Attach':'fal se',

' Debugger Type' :' 3",

'Renmpte' :'1',

' Renot eMachi ne' : None,

Iy
=== SCONS 280

H o HHH O H R HHHHH

—

Vi sual

Vi sual

H HOHHH HH

Renot eConmand' :
HtpUrl': None,
PDBPat h' : None,
SQLDebuggi ng' :
Envi ronnent ' : ,
Envi ronnent Merge' : " true',
Debugger Fl avor ' :
VPl RunConmmand' :
MPI RunAr gunment s' :
MPI RunWor ki ngDi rectory' : None,
Appl i cati onCommand' : None,
Appl i cati onArgunments': None,

' Shi nConmand' :
MPI Accept Mode' :
MPl Accept Filter':

St udi o ver si on,

None,

None,

None,

None,

None,

None,
None,

None,

2. Because there are a lot of different options depending on the M crosoft

if you use nore than one version you have to

define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with M crosoft

Studi o 2012 (v1l):

V10DebugSetti ngs = {
' Local Debugger Command' : ' c:\\ myapp\\using\\thisdlIl.exe",
' Local Debugger Wor ki ngDirectory': 'c:\\nyapp\\using\\",
' Local Debugger CommandAr gunents': ' -p password',

HHHHHHHHHH R H R

}

#

Local Debugger Envi ronnent' : None,
Debugger Fl avor ' :
Local Debugger Att ach' : None,

Local Debugger Debugger Type' : None,
Local Debugger Mer geEnvi ronment * : None,
Local Debugger SQLDebuggi ng' : None,
Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,
Renot eDebugger Wor ki ngDi rectory' : None,
Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,
Renot eDebugger Att ach' : None,

' Renot eDebugger SQLDebuggi ng' : None,
Depl oynment Di rectory' : None,

" Addi tional Files':
' Renot eDebugger Depl oyDebugCppRunti me' : None,
' WebBr owser Debugger Ht t pUr | ' : None,

" WebBr owser Debugger Debugger Type' : None,

" WebSer vi ceDebugger Ht t pUr| ' : None,

" WebSer vi ceDebugger Debugger Type' : None,

" WebSer vi ceDebugger SQLDebuggi ng' : None,

' W ndowsLocal Debugger' ,

None,

3. Select the dictionary you want dependi ng on the version of Visual Studio

Iy
=== SCONS

281

Files you want to generate.

#

if not env.Get Option('userfile'):
dbgSetti ngs = None

elif env.get(' MSVC VERSION , None) == '9.0":
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:

dbgSetti ngs = None

#

4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp’, 'stdafx.cpp']
barincs = ['targetver.h']

barl ocal i ncs = [' St dAf x. h']

barresources = ['bar.rc', 'resource.h']

barm sc = [' ReadMe. t xt ']

dl I = env. SharedLi brary(target="bar.dll"', source=barsrcs)

env. MBVSPr oj ect (
target='Bar' + env[' MSVSPRQIECTSUFFI X],
srcs=barsrcs,
i ncs=bari ncs,
| ocal i ncs=barl ocal i ncs,
resour ces=barresour ces,
m sc=barm sc
bui l dtarget=[dlII[0]] * 2,
vari ant =(' Debug| Wn32', 'Rel ease| Wn32'),
cndar gs=f' vc={ msvcver}"',
DebugSetti ngs=(dbgSettings, {}),

MBVSSol ut i on()
env.M5VSSol ut i on()
Build a Microsoft Visual Studio Solution file.

Builds a Visual Studio solution file based on the version of Visua Studio that is configured: either the latest
installed version, or the version specified by $MSVC_VERSI ON in the construction environment. For Visua
Studio 6, a. dswfile is generated. For Visual Studio .NET 2002 and later, it will generate a. sl n file. Note
there are multiple versioning schemes involved in the Microsoft compilation environment - see the description
of SMSVC_VERSI ON for equivalences.

The solution file is a container for one or more projects, and follows the format described at https://
learn.microsoft.com/en-us/visual studio/extensi bility/internal s/sol ution-dot-sin-file [https://learn.microsoft.com/
en-us/visual studio/extensibility/internal s/sol ution-dot-sln-filg].

The following values must be specified:

target
The name of thetarget . dswor . sl n file. The correct suffix for the version of Visual Studio must be used,
but the value $MSVSSOLUTI ONSUFFI X will be defined to the correct value (see example below).

Iy
=== SCONS 282

https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file

Ni n
env

vari ant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release”, but really can be anything you want. For
MSVS 7 they may also specify target platform, like this" Debug| Xbox" . Default platform is Win32.

proj ects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. Note that these filenames need to be specified as strings, NOT as SCons File Nodes.
This is because the solution file will be interpreted by MSBuild and by Visual Studio, which know nothing
about SCons Node types.

In addition to the mandatory arguments above, the following optional values may be specified as keyword
arguments:

auto filter_projects
Under certain circumstances, solution file names or solution file nodes may be present in the pr oj ect s
argument list. When solution file names or nodes are present in the pr oj ect s argument list, the generated
solution file may contain erroneous Project records resulting in VS IDE error messages when opening the
generated solution file. By default, an exception is raised when a solution file name or solution file node is
detected in the pr 0j ect s argument list.

The accepted valuesfor aut o_fi | t er _proj ects are:

None
An exception is raised when a solution file name or solution file node is detected in the pr oj ect s
argument list.

None isthe default value.

True or evaluates True
Automatically remove solution file names and solution file nodes from the pr oj ect s argument list.

Fal se or eval uates Fal se
Leave the solution file names and solution file nodes in the pr oj ect s argument list. An exception is
not raised.

When opening the generated solution file with the VS IDE, the VS IDE will likely report that there are
erroneous Project records that are not supported or that need to be modified.

Example Usage:

env. M5VSSol ut i on(
target="Bar" + env["MSVSSOLUTI ONSUFFI X"],
proj ects=["bar" + env["MSVSPRQIECTSUFFI X"]1],
vari ant =" Rel ease",

ja()

N nj a()

A special builder which adds a target to create a Ninja build file. The builder does not require any source files
to be specified.

Note

Thisis an experimental feature. To enable it you must use one of the following methods

~

'—‘—' SCONS 283

On the conmand |ine
- -experi ment al =ni nj a

O in your SConstruct
Set Option(' experinental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you need to install the Python ninja package, as the tool by default depends on being
abletodoani nport of the package This can be done via:

python -mpip install ninja

If called with no arguments, the builder will default to atarget name of ni nj a. bui | d.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple
sources, the sourcelist will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

hj ect ()
env.(vj ect ()
A synonym for the St at i cObj ect builder method.

Package()

env.Package()
Builds software distribution packages. A package is a container format which includes files to install along with
metadata. Packaging is optional, and must be enabled by specifying the packagi ng tool. For example:

env = Environnent (tool s=['default', 'packaging'])

SCons can build packagesin anumber of well known packaging formats. Thetarget package type may be selected
with the SPACKAGETYPE construction variable or the - - package- t ype command line option. The package
type may be alist, in which case SCons will attempt to build packages for each typein the list. Example:

env. Package(PACKAGETYPE=["'src_zip', 'src_targz'], ...other args...)

The currently supported packagers are:

nsi Microsoft Installer package

rpm RPM Package Manager package

i pkg Itsy Package Management package
tarbz2 bzip2-compressed tar file

Iy
=== SCONS 284

targz gzip-compressed tar file

tarxz xz-compressed tar file

zZip zipfile

src_tarbz2 bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the sour ce keyword argument. If omitted,
the Fi ndl nstal | edFi | es function is called behind the scenes to select al files that have an | nst al |,
Install As orlnstall Versi onedLi b Builder attached. If thet ar get keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of thefilesto be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may also be attached to files (or more accurately,
Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the $PACKAGERCOT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environnent (tool s=["default", "packaging"])
env.Install ("/bin/", "ny_progrant')
env. Package(
NAME="f 00",
VERSI ON="1. 2. 3",
PACKAGEVERSI ON=0,
PACKAGETYPE="r pnt',
LI CENSE="gpl ",
SUMVARY="Dbal al al al al ",
DESCRI PTI ON="t hi s should be really really | ong",
X_RPM GROUP="Appl i cati on/fu",
SOURCE URL="https://foo.org/foo-1.2.3.tar.gz",

)

Inthisexample, thetarget/ bi n/ my_pr ogr amcreated by thel nst al | call would not be built by default since
it is not under the project top directory. However, since no sour ce is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGEROCOT, no write is
actually done to the system's/ bi n directory, and the target will be selected since after rebasing to underneath
$PACKAGERQQT it is now under the top directory of the project.

PCH()

env.PCH()
BuildsaMicrosoft Visual C++ precompiled header. Calling thisbuilder returnsalist of two target nodes. the PCH
asthefirst element, and the object file as the second element. Normally the object fileisignored. The PCHbuilder
is generally used in conjunction with the $PCH construction variable to force object files to use the precompiled
header:

Iy
=== SCONS 285

env[' PCH] = env. PCH(' St dAf x. cpp') [0]
Note

Thisbuilder is specific to the PCH implementation in Microsoft Visual C++. Other compiler chainsalso
implement precompiled header support, but PCH does not work with them at thistime. As aresult, the
builder is only generated into the construction environment when Microsoft Visual C++ is being used
as the compiler.

The builder only works correctly in a C++ project. The Microsoft implementation distinguishes between
precompiled headers from C and C++. Use of the builder will cause the PCH generation to happen with
aflag that tellscl.exe al of the files are C++ files; if that PCH file is then supplied when compiling aC
source file, cl.exe will fail the build with a compatibility violation.

If possible, arrange the project so that a C++ source file passed to the PCH builder is not also included
in the list of sources to be otherwise compiled in the project. SCons will correctly track that file in the
dependency tree as a result of the PCH call, and (for MSVC 11.0 and greater) automatically add the
corresponding object fileto thelink line. If the source list is automatically generated, for example using
the @ ob function, it may be necessary to remove that file from the list.

PDF()

env.PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, . | t x, or. | at ex input file). The suffix
specified by the $PDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
isnot already present. PDF is a single-source builder. Example:

builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
bui |l ds bbb. pdf from bbb. dvi
env. PDF(target = 'bbb', source = 'bbb.dvi")

PO nit()

env.PA nit ()

This builder is set up by the nsgi ni t tool. The builder initializes missing POfile(s) if SPOAUTO NI T is set.
If $POAUTA NI T is not set (the default), POl ni t prints instruction for the user (such as a trandlator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQUpdat e chooses intelligently between msgmer ge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests. POl ni t isasingle-source builder. The sour ce parameter can also be omitted
if LI NGUAS_FI LE is set.

Target nodesdefined through PQOl ni t arenot built by default (they'rel gnor edfrom' . ' node) but are added to
special Al i as (" po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-creat e.

Example 1. Initializeen. po and pl . po from messages. pot :

env.POnit(['en", "pl']) # nmessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o. pot :

env.POnit(['en", "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Iy
=== SCONS 286

Example 3. Initializeen. po and pl . po fromf 00. pot but using the SPOTDOVAI N construction variable:

env.POnit(['en', "pl'], POTDOVAI N='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The fileswill be initialized from template
nessages. pot:

env. PO ni t (LI NGUAS_FI LE=True) # needs 'LINGUAS file

Example5. Initidizeen. po and pl . pl POfilesplusfilesfor languages defined in L1 NGUAS file. Thefileswill
beinitialized from template mressages. pot :

env.PAOnit(["en, '"pl'], LINGUAS_ FILE=True)

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

env[' POAUTONIT'] = True
env[' LI NGUAS FILE'] = True
env[' POTDOVAIN] = 'foo'
env. PO nit ()

which has same efect as:

env. PO ni t (POAUTO NI T=Tr ue, LI NGUAS FI LE=True, POTDOMAI N='f 00')

Post Scri pt ()

env.Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. tex, . | t x, or . | at ex input file). The suffix
specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Post Scri pt isasingle-source builder. Example:

builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
bui |l ds bbb. ps from bbb. dvi
env. Post Scri pt(target = 'bbb', source = 'bbb.dvi")

POTUpdat e()

env.POTUpdat e()
Thebuilder isset up by thexget t ext tool, part of theget t ext toolset. The builder updatesthe target POT file
if existsor createsit if it doesn't. The target nodeis not selected for building by default (e.g. scons .), but only
on demand (i.e. when the given POT fileisreguired or when special aliasisinvoked). This builder addsits target
node (messages. pot , say) to aspecia aias (pot - updat e by default, see SPOTUPDATE_ALI AS) so you
can update/create them easily with scons pot - updat e. Thefileis not written until thereis no real changein
internationalized messages (or in comments that enter POT file).

Note

You may see xgettext(1l) being invoked by the xget t ext tool even if there is no real change in
internationalized messages (so the POT fileis not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Iy
=== SCONS 287

Example 1. Let's create po/ directory and place following SConst r uct script there:

SConstruct in 'po/' subdir

env = Environnent (tool s=['default', 'xgettext'])
env. POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate(['bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

$ scons # Does not create foo.pot nor bar. pot

$ scons foo. pot # Updates or creates foo. pot

$ scons pot-update # Updates or creates foo.pot and bar. pot
$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. Thet ar get argument can be omitted, in which case the default target name nessages. pot is
used. The target may also be overridden by setting the $POTDOVAI N construction variable or providing it as an
override to the POTUpdat e builder:

SConstruct script

env = Environnent (tool s=['default', 'xgettext'])

env[' POTDOMAIN] = "foo"

env. POTUpdat e(source=["a. cpp", "b.cpp"]) # Creates foo0. pot

env. POTUpdat e(POTDOVAI N="bar", source=["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sour ce parameter may also be omitted, if it is specified in a separate file, for example
POTFI LES. i n:

POTFILES.in in 'po/' subdirectory
..la.cpp

../ b.cpp

end of file

The name of the file (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM

SConstruct file in 'po/' subdirectory
env = Environnent (tool s=['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROVE' POTFI LES. i n')

Example 4. Y ou can use $XGET TEXTPATH to define the source search path. Assume, for example, that you have
filesa. cpp,b. cpp, po/ SConst ruct ,po/ POTFI LES. i n. Thenyour POT-related files could look like this:

POTFILES.in in 'po/' subdirectory

a.cpp

b. cpp
end of file

SConstruct file in 'po/' subdirectory
env = Environment (tool s=['default', 'xgettext'])

Iy
=== SCONS 288

env. POTUpdat e(XGETTEXTFROVE' POTFI LES. i n*, XGETTEXTPATH="../")

Example 5. Multiple search directories may be defined as a list, i.e. XGETTEXTPATH=["'dir1l',
"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to thefirst file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

SConstruct file in '0/1/po/' subdirectory
env = Environment (tool s=['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROVE' POTFI LES. i n*, XGETTEXTPATH=['../', '../../['])

and 0/ 1/ po/ POTFI LES. i n:

POTFILES.in in '0/1/po/' subdirectory

a.cpp
end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:

/[* 0/ a.cpp */
gettext("Hello from../../a.cpp")

and the second is0/ 1/ a. cpp:

[* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain 0/ 1/ po/ messages. pot withthemessage" Hel 1l o from../a. cpp".When
you reverse order in $XGETTEXTFOM i.e. when you write SConscript as

SConstruct file in '0/1/po/' subdirectory
env = Environment (tool s=['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROVE' POTFI LES. i n*, XGETTEXTPATH=['../../', '../['])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnsgi d "Hel |l o
from../a.cpp".

PQUpdat e()

env.PQUpdat e()
The builder is set up by the msgner ge tool. part of the get t ext toolset. The builder updates PO files with
msgmer ge(1), or initializes missing PO files as described in the documentation of the nsgi ni t tool and the
PA ni t builder (see dso $PCAUTA NI T). POUpdat e isasingle-source builder. The sour ce parameter can
also be omitted if $L1 NGUAS_FI LE is set.

Thetarget nodes are not selected for building by default (e.g. scons .). Instead, they are added automatically to
special Al i as (" po- updat e' by default). The alias name may be changed through the SPOUPDATE_ALI AS
construction variable. You can easily update PO files in your project by scons po- updat e. Note that
PQOUpdat e does not add itstargetsto the po- cr eat e diasas PO ni t does.

Example 1. Updateen. po and pl . po fromnmessages. pot template (see also $POTDOVAI N), assuming that
the later one exists or thereisrule to build it (see POTUpdat e):

Iy
=== SCONS 289

env. POUpdate(['en', ' pl']) # messages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:

env. POQUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Updateen. po and pl . po fromf 0o. pot (another version):

env. POUpdate(['en', 'pl'], POIDOVAIN='"foo') # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

env. PQUpdat e(LI NGQUAS_FI LE=True) # needs 'LINGUAS file

Example 5. Same as above, but update from f 0o. pot template:

env. POUpdat e(LI NGQUAS_FI LE=True, source=['fo00'])

Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated
fromnessages. pot template:

produce 'en.po', 'pl.po" + files defined in 'LINGUAS :
env. POQUpdate(['en', 'pl"'], LINGUAS FILE=True)

Example 7. Use $POAUTO NI T to automatically initialize POfileif it doesn't exist:

env. POUpdat e(LI NGQUAS_FI LE=True, PQOAUTO NI T=Tr ue)

Example 8. Update PO files for languages defined in LI NGUAS file. The files are updated from f 0o. pot
template. All necessary settings are pre-configured via environment.

env[' POAUTO NI T'] = True
env['LINGUAS FILE] = True
env[' POTDOMAIN'] = 'foo'
env. POUpdat e()

Progr am()
env.Pr ogr am)

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Cbj ect

builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $PROGPREFI X construction variable (nothing
by default), and suffix, specified by the $PROGSUFFI X construction variable (by default, . exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env. Program(target='foo', source=['foo0.0', 'bar.c', '"baz.f'])

Iy
=== SCONS 290

ProgramAl | At Once()
env.ProgramAl | At Once()
Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the
testing frameworks do this). For this it is imperative that all sources are compiled and linked in asingle call to
the D compiler. This builder serves that purpose.

env. ProgramAl | At Once(' executable', ["mod_a.d, nod _b.d', 'nod _c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in asingle compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()

env.RES()
Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

RM C()

env.RM C()
Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of . cl ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target='classdir', source='src')
env. RM C(target="outdirl , source=cl asses)

env. RM C(

target="outdir2',

sour ce=[' package/ foo. cl ass', 'package/bar.class'],
)
env. RM C(

target="outdir3',

source=["'cl asses/foo.class', 'classes/bar.class'],

JAVACLASSDI R=' cl asses',
)

RPCGend i ent ()

env.RPCGend i ent ()
Generatesan RPC client stub (_cl nt . c) filefrom a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env. RPCGenClient (" src/rpcif.x")

Iy
=== SCONS 291

RPCGenHeader ()

env.RPCGenHeader ()
Generates an RPC header (. h) file from aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

RPCGenSer vi ce()

env.RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env. RPCGenCl i ent (" src/rpcif.x")

RPCGenXDR()

env.RPCGenXDR()
Generatesan RPC XDR routine (_xdr . c) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env. RPCGenCl i ent (' src/rpcif.x")

Shar edLi brary()

env.Shar edLi brary()
Builds a shared library given one or more object files and/or C, C++, D or Fortran source files. Any source files
listed inthe sour ce parameter will be automatically compiled to object files suitable for usein a shared library.
Any object files listed in the sour ce parameter must have been built for a shared library (that is, using the
Shar edObj ect builder method). sconswill raise an error if there is any mismatch.

Thetarget library file prefix, specified by the $SHLI BPREFI X construction variable (by default, | i b on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLI BSUFFI X construction variable (by
default, . dl | on Windows systems, . so on POSIX systems), are automatically added (if not already present)
to the target name to make up the library filename. On a POSIX system, if the $SHLI BVERSI ON construction
variableis set, it is appended (following a period) to the resulting library name.

Example:

env. Shar edLi brary(target="bar', source=['bar.c', 'foo.0'])

On Windows systems, the Shar edLi br ary builder method will always build an import library (. I'i b) in
addition to the shared library (. dl |), adding a. | i b library with the same basename if there is not aready a
. I'i b fileexplicitly listed in the targets.

On Cygwin systems, the Shar edLi br ar y builder method will always build an import library (. dl | . @) in
addition to the shared library (. dl |), adding a. dl | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

Iy
=== SCONS 292

If $SHLI BVERSI ON is defined, a versioned shared library is created. This modifies $SHLI NKFLAGS as
required, adds the version number to the library name, and creates any symbolic links that are needed.

env. Shar edLi brary(target='bar', source=['bar.c', 'foo.0'], SHLIBVERSI ON='1.5.2")

On a POSIX system, supplying a simple version string (no dots) creates exactly one symbolic link:
SHLI BVERSI ON=" 1" would create (for example) library | i bbar . so. 1 and symboalic link | i bbar . so.
Supplying a dotted version string will create two symbolic links (irrespective of the number of segments in
the version): SHLI BVERSI ON="1. 5. 2" for the same library would create library | i bbar . so. 1. 5. 2 and
symbalic links | i bbar. so and | i bbar. so. 1. A Darwin (OSX) system creates one symlink in either case,
for the second example thelibrary would bel i bbar. 1. 5. 2. dyl i b andthelink would bel i bbar . dyl i b.

On Windows systems, specifyingther egi st er =1 keyword argument will causethe. dl | to beregistered after
it is built. The command that is run is determined by the $REGSVR construction variable (regsvr 32 by default),
and the flags passed are determined by $REGSVRFLAGS. By default, SREGSVRFLAGS includesthe/ s option,
to prevent dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS,
be sureto include the/ s option. For example,

env. Shar edLi brary(target ="' bar', source=['bar.cxx', 'foo.obj'], register=1)
will register bar . dl | asa COM object when it is done linking it.

Shar edObj ect ()

env.Shar edhj ect ()
Builds an object file intended for inclusion in a shared library. Source files must have one of the same set
of extensions specified for the St at i cQbj ect builder method. The target object file prefix, specified by
the $SHOBJPREFI X construction variable (by default, the same as $OBIPREFI X), and suffix, specified
by the $SHOBJSUFFI X construction variable, are automatically added to the target if not already present.
Shar edObj ect isasingle-source builder. Examples:

env. Shar edObj ect (t arget =' ddd', source='ddd.c')

env. Shar edObj ect (t arget =' eee. 0', source='eee. cpp')
env. SharedObj ect (target="fff.obj', source="fff.for")
env. Shar edObj ect (source=E ob(' *.c'))

On some platformsbuilding ashared object requires additional compiler option(s) (e.g. - f PI Cfor gec) inaddition
to those needed to build a normal (static) object. If shared and static objects differ, SCons will allow only shared
objects to be linked into a shared library, and will use a different suffix for shared objects to help indicate and
track the difference.

Source files will be scanned according to the suffix mappings in the Sour ceFi | eScanner object. See the
manpage section " Scanner Objects’ for more information.

StaticLibrary()

env.StaticLibrary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $L1 BPREFI X construction variable (by default, | i b on POSIX systems, nothing on Windows systems),
and suffix, specified by the $LI BSUFFI X construction variable (by default, . | i b on Windows systems, . a on
POSIX systems), are automatically added to the target if not already present. Example:

Iy
=== SCONS 293

env. StaticLi brary(target="bar', source=['bar.c', 'foo.0'])

Any object fileslisted in the sour ce must have been built for astatic library (that is, using the St at i cChj ect
builder method). scons will raise an error if there is any mismatch.

Stati cObj ect ()

env.Stati cObj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. The file extension mapping is
shown in the table:

.asm assenbly | anguage file
. ASM assenbly | anguage file

. C Cfile
.C Wndows: Cfile
POSI X: C++ file
. CC C++ file
. cpp C++ file
. CXX C++ file
. CXX C++ file
. C++ C++ file
. C++ C++ file
.d Dfile
i Fortran file
. F W ndows: Fortran file
PCSI X: Fortran file + C pre-processor
.for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
FPP Fortran file + C pre-processor
m hject Cfile
. mm bject C++ file
.S assenbl y | anguage file
.S W ndows: assenbly | anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X: assenbly | anguage file + C pre-processor
. sSpp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

The target object file prefix, specified by the $OBJPREFI X construction variable (empty string by default), and
suffix, specified by the $0BJ SUFFI X construction variable (. obj onWindowssystems,. o on POSIX systems),
areautomatically added to thetarget if not already present. St at i cObj ect isasingle-source builder. Examples:

env. Stati cQbj ect (target="aaa', source='aaa.c')
env. St ati cObj ect (target="bbb. o', source='bbb.c++')
env. St ati cObj ect (target="'"ccc.obj', source='ccc.f")
env. St ati cObj ect (source=E ob('*.c'))

Source files will be scanned according to the suffix mappings in the Sour ceFi | eScanner object. See the
manpage section " Scanner Objects’ for more information.

Iy
=== SCONS 294

Sub
env

stfile()

Substfile()

The Subst fi | e builder creates a single text file from a template consisting of afile or set of files (or nodes),
replacing text using the $SUBST_DI CT construction variable (if set). If aset, they are concatenated into the target
fileusing thevaueof the$LI NESEPARATOR construction variable asaseparator between contents; the separator
is not emitted after the contents of the last file. Nested lists of sourcefiles are flattened. Seeaso Text fi |l e.

By default, the target file encoding is "utf-8" and can be changed by $FI LE_ENCCODI NG Examples:

If asingle sourcefile nameis specified and hasa. i n suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(an empty string by default in both cases) are automatically added to the target if they are not aready present.

If aconstruction variable named $SUBST_DI CT is present, it may be either a Python dictionary or a sequence of
(key,val ue) tuples. If itisadictionary it isconverted into alist of tupleswith unspecified order, soif onekey is
aprefix of another key or if one substitution could be further expanded by another substitution, it is unpredictable
whether the expansion will occur.

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment (tool s=['default'])

env['prefix'] = "'/usr/bin'
script_dict = {' @refix@: '/bin', '@xec_prefix@: '$prefix'}
env. Substfile('script.in', SUBST Dl CT=script_dict)

conf_dict = {' WERSION% : '1.2.3", '9%BASE%: 'M/Prog'}
env. Substfile(' config.h.in", conf_dict, SUBST D CT=conf _di ct)

UNPREDI CTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env. Substfile(' foo.in', SUBST DI CT=bad_f 00)

PREDI CTABLE - keys are applied | ongest first
good_foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT=good_f 00)

UNPREDI CTABLE - one substitution could be further expanded
bad bar = {' @ar@: ' @oap@, ' @oap@: 'lye'}
env. Substfile(' bar.in', SUBST DI CT=bad_bar)

PREDI CTABLE - substitutions are expanded in order
good_bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile(' bar.in', SUBST DI CT=good_bar)

the SUBST DI CT may be in conmon (and not an override)
substutions = {}

subst = Environment(tool s=['textfile'], SUBST DI CT=substitutions)
substitutions[' @oo@] = 'foo

subst['SUBST DICT' |[' @ar@] = 'bar'

~

'—‘-‘ SCONS 295

Tar
env

Tex
env

subst . Substfil e(
' pgni. c',
[Val ue(' #i nclude "@oo@h"'), Value('#include "@ar@h"'), "comon.in",

)
subst . Substfil e(
' pgn2.c',
[Val ue(' #i nclude "@oo@h"'), Value('#include "@ar@h"'), "comon.in",
)
0
Tar ()

Buildsatar archive of the specified filesand/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

Create the stuff.tar file.

env. Tar('stuff', ['subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Tar (' stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-¢c -2',
TARSUFFI X = ' . tgz')

env. Tar (' foo')

tfile(

Textfile()

The Text fi | e builder generates a single text file from a template consisting of alist of strings, replacing text
using the $SUBST_DI CT construction variable (if set) - see Subst f i | e for adescription of replacement. The
strings will be separated in the target file using the value of the $L1 NESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings: they can be Nodes or Python objects that convert cleanly to Val ue nodes.

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(by default an empty string and . t xt , respectively) are automatically added to the target if they are not already
present.

By default, the target file encoding is "utf-8" and can be changed by $FI LE_ENCODI NG Examples:

builds/wites foo.txt
env. Textfile(target="foo.txt', source=[' CGoethe', 42, 'Schiller'])

builds/wites bar.txt

"pgnt.in"],

"pgne.in"],

env. Textfile(target="bar', source=['lalala', 'tanteratei'], LINESEPARATOR='|*")

~

'—‘-‘ SCONS 296

nested lists are flattened automatically
env. Textfil e(target="blob', source=['lalala', ['CGoethe', 42, 'Schiller'], 'tanteratei']

files may be used as input by wapping themin File()

env. Textfil e(
target='concat', # concatenate files with a marker between
source=[File('concatl'), File('concat2')],

)

Results:

f 0o. t xt

Coet he
42
Schil | er

bar . t xt

I al al a| *t ant er at ei

bl ob. t xt

| al al a
Coet he

42

Schil | er

t ant er at ei

Transl at e()

env.Transl at e()
This pseudo-Builder is part of theget t ext toolset. The builder extracts internationalized messages from source
files, updates the POT template (if necessary) and then updates POtranslations (if necessary). If $POAUTAO NI T
is set, missing PO files will be automatically created (i.e. without translator person intervention). The variables
$LI NGUAS_FI LE and $POTDOVAI N are taken into account too. All other construction variables used by
POTUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl at e:

SConscript in 'po/' directory

env = Environnent (tool s=["default", "gettext"])
env[' POAUTO NIT'] = True
env. Translate(['en', "pl"'], ['../a.cpp', '../b.cpp'])

Example 2. If you wish, you may also stick to the conventional style known from autotools, i.e. using
POTFI LES. i n and LI NGUAS files to specify the targets and sources:

LI NGUAS
en pl

Iy
=== SCONS 297

end

POTFI LES. i n

a.cpp

b. cpp

end

SConscri pt

env = Environment (tool s=["default", "gettext"])

env[' POAUTONIT'] = True
env[' XGETTEXTPATH] =['../"]
env. Transl at e(LI NGUAS_FI LE=True, XGETTEXTFROVE=' POTFI LES.in')

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfiles to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and POfiles are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionally, thefilelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandators, and they may work with the project in their usual
way.

Example 3. Let's prepare a devel opment tree as below

proj ect/

+ SConst r uct

+ bui | d/

+ src/

+ po/
+ SConscri pt

SConscri pt.i 18n
POTFI LES. i n
LI NGUAS

+ + +

with bui | d being the variant directory. Write the top-level SConst r uct script asfollows

SConst ruct

env = Environment (tool s=["default", "gettext"])
VariantDir("build , 'src', duplicate=Fal se)

env[' POAUTONIT'] = True

SConscri pt (' src/ po/ SConscript.i18n', exports='env')
SConscri pt (' bui | d/ po/ SConscript', exports='env')

thesr c/ po/ SConscri pt.i 18nas

src/ po/ SConscript.i 18n

| mport (' env')

env. Transl at e(LI NGUAS_FI LE=True, XGETTEXTFROVE' POTFI LES.in', XCGETTEXTPATH=['../'])

and thesr ¢/ po/ SConscr i pt

Iy
=== SCONS 298

src/ po/ SConscri pt
| mport (' env')
env. MOFi | es(LI NGUAS_FI LE=Tr ue)

Such a setup produces POT and POfiles under the source treein sr ¢/ po/ and binary MOfiles under the variant
treein bui | d/ po/ . This way the POT and PO files are separated from other output files, which must not be
committed back to source repositories (e.g. MOfiles).

Note

In the above example, the PO files are not updated, nor created automatically when you issue the
command scons .. The files must be updated (created) by hand viascons po- updat e and then
MOfiles can be compiled by runningscons . .

TypelLi brary()

env.Typeli brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dl). Inaddition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the . i dI file. For example,

env. Typeli brary(source="foo.idl")
Will createf 0o. t1 b,foo. h,foo_i.c,foo_p.candfoo_data. c files.

Ui c()

env.Ui c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodesin
the that order. This builder is only available after using the tool gt 3. Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names of
built files; if you don't want prefixes, you may set them to ™). See the $QT'3DI R variable for more information.
Example:

env.Uc('foo.ui') # ->['foo.h', '"uic_foo.cc', 'noc_foo.cc']
env. U c(
target=Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
sour ce='foo0. ui'
) # ->['"include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']

Zi p()
env.Zi p()

Buildsazip archive of the specified files and/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Create the stuff.zip file.

env. Zi p('stuff', ['subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Zi p(' stuff', 'another')

Iy
=== SCONS 299

Appendix C. Tools

This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this version of
SCons.

386asm
Sets construction variables for the 386ASM assembiler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixc++
Sets construction variables for the IMB xlc/ Visual Age C++ compiler.

Sets: $CXX, SCXXVERSI QN, $SHCXX, $SHOBJ SUFFI X.

aixcc
Sets construction variables for the IBM xlc/ Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age 77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visua Agelinker.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

applelink
Sets construction variables for the Apple linker (similar to the GNU linker).
Sets: $APPLELI NK_COWVPATI BI LI TY_VERSI ON, $APPLELI NK_CURRENT_VERSI ON,
$APPLEL| NK_NO_COWPATI BI LI TY_VERSI ON, $APPLELI NK_NO_CURRENT_VERSI ON,
$FRAVEVORKPATHPREFI X, $L DMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X,
$LDMODULESUFFI X, $LI NKCOM $SHLI NKCOM $SHLI NKFLAGS,
$_APPLEL| NK_COWPATI BI LI TY_VERSI ON, $_APPLELI NK_CURRENT_VERSI ON,

$_FRAVEVORKPATH, $_ FRAMEVIORKS.
Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANLI BFLAGS.

Sets construction variables for the as assembler.
Sets: $AS, SASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

Iy
=== SCONS 300

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$I NCPREFI X, $I NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X,
$CPPDEFSUFFI X, $FRAVEWORKPATH, $FRAMVEVORKS, $1 NCPREFI X, $1 NCSUFFI X, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $CCCOVBTR, $PLATFORM $SHCCCOVSTR.

clang
Set construction variables for the Clang C compiler.

Sets: $CC, $CCDEPFLAGS, $CCVERSI ON, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X,
$STATI C_AND_SHARED_OBJECTS_ARE_THE_SAME.

compilation_db
Setsup Conpi | at i onDat abase builder which generates a clang tooling compatible compilation database.

Sets: $COWVPI LATI ONDB_COMSTR, $COVPI LATI ONDB_PATH_FI LTER,
$COVPI LATI ONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X,
$FORTRANMODDI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets. $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $| NCSUFFI X, $0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Uses: $CXXCOMBTR, $SHCXXCOMSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $I MPLI BPREFI X, $I MPLI BSUFFI X, $LDMODULEVERSI ONFLAGS, $LI NKFLAGS,
$RPATHPREFI X, $RPATHSUFFI X, $SHLI BPREFI X, $SHLI BSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $_ L DMODULEVERSI ONFLAGS, $_SHLI BVERSI ONFLAGS.

Iy
=== SCONS 301

default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the t ool s parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

Thelist of tools selected by default is not static, but is dependent both on the platform and on the softwareinstalled
on the platform. Sometoolswill not initialize if an underlying command is not found, and some tools are sel ected
from alist of choices on a first-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, | ex, yacc, rpcgen, swig, jar, javac, javah, rm c, dvi pdf, dvi ps, gs, tex, | atex,
pdf | at ex, pdftex,tar,zip,textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc, i ntel c,icc, cc;aC
++ compiler from g++, i nt el ¢, i cc, cXX; an assembler from gas, nasm nasm alinker from gnul i nk,
i 1i nk; aFortran compiler fromgf ortran, g77,ifort,ifl,f95,f90,f77; and astatic archiver ar . It
also selects all found from the list md rpm.

OnWindows systems, the default toolslist selects (first-found): aC compiler fromnsvc, m ngw,gcc,i nt el c,
icl,icc,cc,bcc32;aC++compilerfromnsvc,intel c,icc,g++,¢cXX, bcc32;anassembler fromnmasm
nasm gas, 386asny alinker from sl i nk, gnul i nk,ilink,|inkloc,ilink32;aFortran compiler
fromgfortran,g77,ifl,cvf,f95,f90,fortran; andastatc archiver fromnsl i b,ar,tlib;Itaso
selectsal found from thelist msvs, i dl .

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; alinker from appl el i nk, gnul i nk; aFortran compiler fromgf ort r an, f 95,
f 90, g77; and astatic archiver ar . It also selects all found from the list m4, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/ Tool /
_init__.py).

dmd
Sets construction variables for D language compiler DMD.

Setss $DC, $DCOM $DDEBUG ~ $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

docbook
Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet uti | s/ xm depend. xsl| by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! Thistool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catalog.

Iy
=== SCONS 302

For activating the tool "docbook", you have to add its name to the Environment constructor, like this
env = Environnent (t ool s=[' dochook'])

On its startup, the docbook tool triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system'’s environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

» thePython| xm bindingtol i bxm 2, or

» astandalone XSLT processor, currently detected are xdtproc, saxon, saxon-xdt and xalan.
Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environnent (tool s=[' dochook'])
env. DocbookHt m (' manual . html ', ' manual . xm ')
env. DocbookPdf (* manual . pdf', ' nmanual .xm ")

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (tool s=[' dochook'])
env. DocbookHt ml (' manual ')
env. DocbookPdf (* manual ')

and get the same result. Target and source lists are also supported:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m ([' manual . htm ' ,"'reference. htm '], ['manual .xm ', 'reference.xm'])

or even

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m ([' manual ', ' reference'])

I mportant

Whenever you leave out thelist of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are vaid for the Builders DocbookH m, DocbookPdf, DocbookEpub,
DocbookSl i desPdf and DocbookXI ncl ude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the r ef nane entriesin your XML source.

TheBuildersDocbookHt ml Chunked, DocbookHt ml hel p andDocbookSl i desHt nml arespecia, inthat:

1. they create alarge set of files, where the exact names and their number depend on the content of the source
file, and

2. themain target isalwaysnamed i ndex. ht i , i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As aresult, there is ssimply no use in specifying a target HTML name. So the basic syntax for these buildersis
always:

Iy
=== SCONS 303

dvi

env = Environment (t ool s=[' docbook'])
env. DocbookHt m hel p(* manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:
env. DocbookHt M (' other.html ', 'manual .xm ', xsl="htm.xsl")

Sincethismay get tediousif you always usethe samelocal naming for your customized X SL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM_HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF
DOCBOOK_DEFAULT_XSL_SLI DESHTM.

and you can set them when constructing your environment:

env = Environment (
t ool s=[' docbook'],
DOCBOOK_DEFAULT_XSL_HTML=' ht m . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=' pdf . xsl ',

)

env. DocbookHt m (' manual ') # now uses htm . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT_XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_SLI DESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM, $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLI NT, $DOCBOOK_XMLLI NTCOM
$DOCBOOK_XMLLI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSL TPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_XSL TPROCPARANS.

Uses: $DOCBOOK_FOPCOVSTR, $DOCBOOK_XML_LI NTCOVSTR, $DOCBOOK_XSLTPROCCOVSTR.

Attachesthe DVI builder to the construction environment.

dvipdf

Sets construction variables for the dvipdf utility.
Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.

Uses: $DVI PDFCOVBTR.

dvips

Sets construction variables for the dvips utility.
Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.

Uses: $PSCOMBTR.

~

'—‘-‘ SCONS 304

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO3FLAGS, $FO3PPCOM $SHF03, $SHF03COM $SHFO3FLAGS, $SHFO3PPCOM
$_F03I NCFLAGS.

Uses: $FO3COMBTR, $FO3PPCOVSTR, $FORTRANCOMVONFLAGS, $SHFO3COVSTR, $SHFO3PPCOVSTR.

fo8
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $F08COM $FO8FLAGS, $FO08PPCOM $SHF08, $SHFO08COM $SHFO8FLAGS, $SHF08PPCOM
$_F08I NCFLAGS.

Uses: $FO8COVSTR, $FO8PPCOVETR, $FORTRANCOMMONFLAGS, $SHFO8COVSTR, $SHFO8PPCOVETR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Uses: $F77COVSTR, $F77PPCOVETR, $FORTRANCOMMONFLAGS, $FORTRANCOMSTR,
$FORTRANFLAGS, $FORTRANPPCOMSTR, $SHF77COMBTR, $SHF77PPCOVBTR, $SHFORTRANCOVSTR,
$SHFORTRANFLAGS, $SHFORTRANPPCOVSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FI0FLAGS, $F90PPCOM $SHF90, $SHFI90COM $SHFI0FLAGS, $SHF90PPCOM
$_F90Il NCFLAGS.

Uses: $F90COVSTR, $F90PPCOVSTR, $FORTRANCOMVONFLAGS, $SHF90COVSTR, $SHF90PPCOVETR.

fo5
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM $FI5FLAGS, $F95PPCOM $SHF95, $SHF95COM $SHFI5FLAGS, $SHF95PPCOM
$_F951 NCFLAGS.

Uses: $F95COMBTR, $F95PPCOVSTR, $FORTRANCOMVONFLAGS, $SHF95COVETR, $SHF95PPCOVSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM
$SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANCOVSTR, $FORTRANPPCOMETR, $SHFORTRANCOVSTR,
$SHFORTRANPPCOVSTR, $_ CPPDEFFLAGS.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

gr77
Set construction variables for the g77 Fortran compiler.

Iy
=== SCONS 305

Sets:. $F77, $F77COM $F77FI LESUFFI XES, $F77PPCOM $F77PPFI LESUFFI XES, $FORTRAN,
$FORTRANCOM $FORTRANPPCOM $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $F77FLAGS, $FORTRANCOMMONFLAGS, $FORTRANFLAGS.

gas
Sets construction variables for the gas assembler. Callsthe as tool.

Sets: $AS.

gce
Set construction variables for the gcc C compiler.

Sets: $CC, $CCDEPFLAGS, $CCVERSI ON, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets. $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERS| ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

gettext
A toolset supporting internationalization and localization of software being constructed with SCons. The tool set
loads the following tools:

» Xgettext - extract internationalized messages from source code to POT file(s).
e nBQi ni t -initialize POfiles during initial translation of a project.

* nsgner ge - update POfiles that already contain translated messages,

» nsgf m - compiletextual POfilesto binary installable MOfiles.

When you enable get t ext , it internally loads all the above-mentioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. Y ou may be however interested in top-level Tr ansl at e builder.

Tousetheget t ext tools, addthe' gett ext' tool toyour construction environment:

env = Environnent (tool s=['default', 'gettext'])

gfortran
Sets construction variables for the GNU Fortran compiler. Callsthef or t r an Tool module to set variables.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFI0FLAGS, $SHF95,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Iy
=== SCONS 306

Sets: $LDMODULEVERSI ONFLAGS, $RPATHPREFI X, $RPATHSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKFLAGS, $_ L DMODUL ESONAME, $_ SHL I BSONANME.

gs
ThisTool setsthe required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finally, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM $GSFLAGS.
Uses: $GSCOVBTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, SCXXVERSI ON, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXXCOM
$CXXFI LESUFRFI X, $I NCPREFI X, $I NCSUFFI X.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.
icl

Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.
ifl

Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $_ CPPDEFFLAGS, $_FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Iy
=== SCONS 307

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM

$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $1 NSTALL, $1 NSTALLSTR.

intelc

Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc

or nsvc (on Linux and Windows, respectively) tool to set underlying variables.
Sets: $AR, $CC, $CXX, $I NTEL_C_COWPI LER_VERSI ON, $LI NK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM $JARFLAGS, $JARSUFFI X.
Uses: $JARCOVBTR.

javac
Sets construction variables for the javac compiler.

Sets. $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM $JAVACFLAGS,
$IAVACLASSSUFFI X, $JAVAI NCLUDES, $J AVASOURCEPATH, $J AVASUFFI X.

Uses: $JAVACCOVSTR.

javah
Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFI X, $JAVAH, $J AVAHCOM $J AVAHFLAGS.
Uses: $JAVACLASSPATH, $JAVAHCOVETR.

latex
Sets construction variables for the latex utility.

Sets: SLATEX, $SLATEXCOM $LATEXFLAGS.
Uses: SLATEXCOMSTR.

Idc
Sets construction variables for the D language compiler LDC2.

Sets. $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X,

$JAVACLASSPATH,

$DFI LESUFFI X,

$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,

$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLI NK, $DLI NKCOM

$DLI NKFLAGPREFI X,

$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,

$SHDLI NKCOM $SHDLI NKFLAGS.

lex
Sets construction variables for the lex lexical analyzer.

Iy
=== SCONS

308

link

Sets: $LEX, $LEXCOM $LEXFLAGS, $LEXUNI STD.

Uses: $LEXCOVBTR, $LEXFLAGS, $LEX_HEADER FI LE, $LEX_TABLES_FI LE.

Sets construction variables for generic POSIX linkers. Thisis a"smart" linker tool which selects a compiler to
complete the linking based on the types of source files.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULENOVERSI ONSYMLI NKS,
$LDMODULEPREFI X, $LDMODULESUFFI X, $LDMODULEVERSI ON, $LDMODULEVERSI ONFLAGS,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LINK,
$LI NKCOM $LI NKFLAGS, $SHLI BSUFFI X, $SHLINK, $SHLI NKCOM $SHLI NKFLAGS,
$__ LDMODULEVERS| ONFLAGS, $__ SHLI BVERSI ONFLAGS.

Uses: $LDMODULECOVSTR, $LI NKCOVSTR, $SHLI NKCOMSTR.

linkloc

m4

Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $L1 NKCOVBTR, $SHLI NKCOMSTR.

Sets construction variables for the m4 macro processor.
Sets: $M4, $MACOM $VAFLAGS.

Uses: SMACOVBTR.

masm

Sets construction variables for the Microsoft assembler.
Sets: $AS, SASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.

Uses: $ASCOVSTR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl

Sets construction variables for the Microsoft IDL compiler.
Sets: $M DL, $M DLCOM $M DLFLAGS.

Uses: $M DLCOMSTR.

mingw

Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM S$LI BPREFI X, $LI BSUFFI X, $OBJSUFFI X, $RC,
$RCCOM $RCFLAGS, $RCI NCFLAGS, $RCI NCPREFI X, $RCl NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $SHOBJ SUFFI X, $W NDOASDEFPREFI X, $W NDOASDEFSUFFI X.

Uses: $RCCOVBTR, $SHLI NKCOVSTR.

msgfmt

Thistool isapart of theget t ext toolset. It provides SCons an interface to the msgfmt(1) command by setting
up the MOFi | es builder, which generates binary message catalog (MO) filesfrom atextual trandlation description
(POfiles).

Iy
=== SCONS 309

Sets: SMOSUFFI X, $MSG-MT, $MSG-MICOM $MSGEMTCOVSTR, $MSG-MTFLAGS, $POSUFFI X.
Uses: $LI NGUAS_FI LE.

msginit
Thistool isapart of sconsget t ext toolset. It provides SCons an interface to the msginit(1) program, by setting
up the PO ni t builder, which creates a new PO file, initializing the meta information with values from the
construction environment (or options).

Setss $SMSANIT, $MSG NITCOM $MsG NI TCOVSTR, $MSA NI TFLAGS, $POAUTAO NI T,
$POCREATE_AL| AS, $POSUFFI X, $POTSUFFI X, $_M5G NI TLOCALE.

Uses: $LI1 NGUAS_FI LE, $POAUTO NI T, $POTDONVAI N.

msgmer ge
Thistool isapart of sconsget t ext toolset. It provides SCons an interface to the msgmer ge(1) command, by
setting up the POUpdat e builder, which merges two Uniform style . po files together.

Sets: $MSGMVERGE, $MSGVERGECOM $MSGVERGECOMSTR, $MSGVERGEFLAGS, $PCSUFFI X,
$POTSUFFI X, $POUPDATE_ALI AS.

Uses: $LI NGUAS_FI LE, $POAUTA NI T, $POTDONVAI N.

mslib
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, SARCOM $ARFLAGS, $L1 BPREFI X, $L1 BSUFFI X.
Uses: $ARCOVSTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM
$SHLI NKFLAGS, $W NDONSDEFPREFI X, $W NDOWSDEFSUFFI X, $W NDONSEXPPREFI X,
$W NDONSEXPSUFFI X, $W NDOASPROGVANI FESTPREFI X, $W NDOASPROGVANI FESTSUFFI X,
$W NDOWESHLI BMANI FESTPREFI X, $W NDOWSSHLI BMANI FESTSUFFI X, $W NDOAS_| NSERT_DEF.

Uses: $LDMODULECOVSTR, $LI NKCOVSTR, $REGSVRCOVSTR, $SHLI NKCOVSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %4 NCLUDE% %1 B% %1 BPATH%and %PATH%

Uses: $MBSDK_DI R, $MSSDK_VERSI ON, $MBVS_VERSI ON.

msvc
Sets construction variables for the Microsoft Visual C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X,
$CXXFLAGS, $1 NCPREFI X, $I NCSUFFI X, $OBJPREFI X, $OBJSUFFI X, $PCHCOM $PCHPDBFLAGS,
$RC, $RCCOM $RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM
$SHCXXFLAGS, $SHOBJPREFI X, $SHOBJ SUFFI X.

Iy
=== SCONS 310

Uses. $CCCOVBTR, $CXXCOVBTR, $MBVC NOTFOUND POLI CY, $MBVC SCRI PTERROR POLI CY,
$MBVC_SCRI PT_ARGS, $MBVC_SDK_VERSI ON, $MBVC_SPECTRE_LI BS,
$MBVC_TOOLSET _VERSI ON, $MBVC_USE_SCRI PT, $MBVC_USE_SCRI PT_ARGS,
$MBVC_USE_SETTI NGS, $MBVC_VERSI ON, $PCH, $PCHSTOP, $PDB, $SHOCCOVSTR, $SHCXXCOVBTR

msvs
Sets construction variables for Microsoft Visua Studio.

Sets: $MBVSBUI LDCOM $MBVSCLEANCOM $MSVSENCCDI NG, $MBVSPRQJECTCOM
$MSVSREBUI LDCOM $MSVSSCONS, $MSVSSCONSCOM $MSVSSCONSCRI PT, $MSVSSCONSFLAGS,
$MBVSSOLUTI ONCOM

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets. $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOMBTR, $CXXCOMSTR, $SHCCCOVETR, $SHCXXCOVSTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
$LINK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM $SASFLAGS, SASPPCOM $ASPPFLAGS.
Uses: $ASCOMBTR, $ASPPCOMSTR.

ninja
Sets up the Ni nj a builder, which generates a ninja build file, and then optionally runs ninja.

Note

This is an experimental feature. This functionality is subject to change and/or removal without a
deprecation cycle.

Sets: $I MPLI CI T_COMVAND _DEPENDENCI ES, $NI NJA_ALI AS_NAME, $NI NJA_CMVD_ARGS,

$NI NJA_COVPDB_EXPAND, $NI NJA_DEPFI LE_PARSE_FORMAT, $NINJA DI R,
$NI NJA_DI SABLE_AUTO_RUN, $NI NJA_ENV_VAR_CACHE, $NI NJA_FI LE_NAME,
$NI NJA_FORCE_SCONS_BUI LD, $NI NJA_GENERATED SOURCE_AL| AS_NAVE,
$NI NJA_GENERATED SOURCE_SUFFI XES, $NI NJA_MBVC _DEPS PREFI X, $NI NJA_POOL,
$NI NJA_REGENERATE_DEPS, $NI NJA_SCONS_DAEMON_KEEP_ALI VE,

$NI NJA_SCONS_DAEMON_PORT, $NI NJA_SYNTAX, $_NI NJA_REGENERATE_DEPS_FUNC.

Uses: $AR, $ARCOM $ARFLAGS, $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CXX, $CXXCOM $ESCAPE,
$LI NK, $L1 NKCOM $PLATFORM $PRI NT_CVD_LI NE_FUNC, $PROGSUFFI X, $RANLI B, $RANLI BCOM
$SHCCCOM $SHCXXCOM $SHLI NK, $SHLI NKCOM

packaging
Sets construction variables for the Package Builder. If thistool isenabled, the - - package-t ype command-
line option is also enabled.

Iy
=== SCONS 311

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREF| X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.
Uses: $PDFLATEXCOMBTR.

pdftex
Sets construction variables for the pdftex utility.

Sets: $SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM
$PDFTEXFLAGS.

Uses: $PDFLATEXCOVSTR, $PDFTEXCOVSTR.

python
Loads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

qt
Placeholder tool to alert anyone still using gt tools to switch to qt3 or newer tool.

qt3
Sets construction variables for building Qt3 applications.

Note

This tool is only suitable for building targeted to Qt3, which is obsolete (the tool is deprecated since
4.3, and was renamed to qt3 in 4.5.0.). There are contributed tools for Qt4 and Qt5, see https.//
github.com/SCong/scons-contrib [https://github.com/SCons/scons-contrib]. Qt4 has also passed end of
life for standard support (in Dec 2015).

Note paths for these construction variables are assembled using the os. pat h. j oi n method so they will have
the appropriate separator at runtime, but are listed here in the various entries only with the ' /' separator for
simplicity.

In addition, the construction variables $CPPPATH, $L1 BPATH and $LI BS may be modified and the variables
$PROGEM TTER, $SHLI BEM TTER and $LI BEM TTER are modified. Because the build-performance is
affected when using this tool, you have to explicitly specify it at Environment creation:

Envi ronnent (tool s=["' default', ' qt3'])
The qt 3 tool supports the following operations:

Automatic moc file generation from header files. Y ou do not have to specify moc files explicitly, the tool does
it for you. However, there are a few preconditions to do so: Your header file must have the same basename as
your implementation file and must stay in the same directory. It must have one of the suffixes. h, . hpp, . H,

Iy
=== SCONS 312

https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib

. hxx, . hh. You can turn off automatic moc file generation by setting $QTr3_AUTOSCAN to Fal se. See also
the corresponding Mbc Builder.

Automatic moc file generation from C++ files. As described in the Qt documentation, include the
moc file at the end of the C++ file. Note that you have to include the file, which is generated
by the transformation ${ QTr3_MOCCXXPREFI X} <basenane>${ QI3_MOCCXXSUFFI X}, by default
<basenane>. np. A warning is generated after building the moc file if you do not include the correct file. If
you areusing Var i ant Di r, you may need to specify dupl i cat e=Tr ue. Y ou can turn off automatic moc file
generation by setting $QT'3_AUTOSCANto Fal se. See aso the corresponding Moc Builder.

Automatic handling of .ui files. The implementation files generated from . ui files are handled much the same
asyacc or lex files. Each .ui file given as a source of Pr ogr am Li br ary or Shar edLi br ar y will generate
three files: the declaration file, the implementation file and a moc file. Because there are also generated headers,
you may need to specify dupl i cat e=Tr ue incallstoVari ant Di r . Seeaso the corresponding Ui ¢ Builder.

Sets: $QT3DI R, $QT3_AUTOSCAN, $QT3_BI NPATH, $QT3_CPPPATH, $QT3 LI B, $QT3_LI BPATH,
$QT3_MXC, $QT3_MOCCXXPREFI X, $QT3_MOCCXXSUFFI X, $QT3_ MOCFROMCXXCOM
$QT3_MOCFROMCXXFLAGS, $QT3_MOCFROVHCOM $QT3_MOCFROVHFLAGS, $QT3_MOCHPREFI X,
$QT3_MOCHSUFFI X, $QT3_UI C, $QT3_Ul CCOM $QT3_Ul CDECLFLAGS, $QT3_UI CDECLPREFI X,
$QT3_Ul CDECLSUFFI X, $QT3_Ul Cl MPLFLAGS, $QT3_Ul CI MPLPREFI X, $QT3_Ul CI MPLSUFFI X,
$QT3_Ul SUFFI X.

Uses: $QT3DI R.

rmic
Sets construction variables for the rmic utility.

Sets: $IJAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.
Uses: $RM CCOVBTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLI ENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVI CEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOVETR, $SARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.
Uses: SARCOVSTR, $SHLI NKCOVSTR.

sgict++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBI SUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBI SUFFI X.

sgilink
Sets construction variables for the SGI linker.

Iy
=== SCONS 313

Sets: $LI NK, SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, SARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X.
Uses: $ARCOVSTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJPREF| X, $SHOBJ SUFFI X.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJI PREFI X, $SHOBJ SUFFI X.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunfo0
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHFI0, $SHFIOFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: $RPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

swig
Sets construction variables for the SWIG interface compiler.

Sets: $SW G, $SW GCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW GDI RECTORSUFFI X,
$SW GFLAGS, $SW G NCPREFI X, $SW G NCSUFFI X, $SW GPATH, $SW GVERSI O\,
$_SW G NCFLAGS.

Uses: $SW GCOVBTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.
Uses: $TARCOMBTR.

tex
Sets construction variables for the TeX formatter and typesetter.

Iy
=== SCONS 314

Sets: $BI BTEX, $Bl BTEXCOM $BI BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $BI BTEXCOVSTR, $LATEXCOVSTR, $MAKEI NDEXCOVSTR, $TEXCOVSTR.

textfile
Set construction variables for the Text f i | e and Subst fi | e builders.

Sets: $FI LE_ENCCDI NG, $LI NESEPARATOR, $SUBSTFI LEPREFI X, $SUBSTFI LESUFFI X,
$TEXTFI LEPREFI X, $TEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

tlib
Sets construction variables for the Borland tlib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $LI BSUFFI X.
Uses: $ARCOVSTR.

Xgettext
This tool is a part of the get t ext toolset. It provides SCons an interface to the xgettext(1) program, which
extracts internationalized messages from source code. The tool sets up the POTUpdat e builder to make PO
Templatefiles.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XGETTEXTCOM $XCGETTEXTCOMSTR,
SXCETTEXTFLAGS, $XGETTEXTFROM $XGETTEXTFROVPREFI X, $XGETTEXTFROMSUFFI X,
SXCETTEXTPATH, $XGETTEXTPATHPREFI X, $XGETTEXTPATHSUFFI X, $_XGETTEXTDOVAI N,
$_XCETTEXTFROMFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc
Sets construction variables for the yacc parser generator.

Sets: $YACC, SYACCCOM $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X,
$YACCVCGHI LESUFFI X, $YACC_GRAPH_FI LE_SUFFI X.

Uses: $YACCCOVSTR, $YACCFLAGS, $YACC_GRAPH_FI LE, $YACC HEADER FI LE.

zip
Sets construction variables for the zip archiver.

Sets: $ZI P, $ZI PCOM $ZI PCOVPRESSI ON, $ZI PFLAGS, $ZI PSUFFI X.

Uses: $Z1 PCOVBTR.

Iy
=== SCONS 315

Appendix D. Functions and
Environment Methods

This appendix contains descriptions of all of the function and construction environment methods in this version of
SCons

Action(action, [output, [var, ...]] [key=value, ...])

env.Action(action, [output, [var, ...]] [key=value, ...])
A factory function to create an Action object for the specifiedact i on. Seethe manpage section " Action Objects"
for a compl ete explanation of the arguments and behavior.

Note that the env. Act i on form of the invocation will expand construction variables in any argument strings,
including the act i on argument, at the time it is called using the construction variables in the construction
environment through which env. Act i on was called. The Act i on global function form delays all variable
expansion until the Action object is actually used.

AddMet hod(obj ect, function, [nane])

env.AddMet hod(f uncti on, [nane])
Addsf unct i on toanobject asamethod. f unct i on will be called with an instance object asthe first argument
as for other methods. If name isgiven, it is used as the name of the new method, else the name of f unct i on
isused.

When the global function AddMet hod is called, the object to add the method to must be passed as the first
argument; typically this will be Envi r onnment , in order to create a method which applies to all construction
environments subsequently constructed. When called using the env. AddMet hod form, the method is added to
the specified construction environment only. Added methods propagate through env. C one calls.

More examples:

Function to add nust accept an instance argumnent.
The Pyt hon convention is to call this '"self".
def ny_nethod(self, arg):

print("nmy_nethod() got", arg)

Use the global function to add a nmethod to the Environment class:
AddMet hod(Envi r onment, my_net hod)

env = Environment ()

env. ny_net hod(' arg')

Use the optional nane argunent to set the name of the nethod:
env. AddMet hod(ny_net hod, ' ot her net hod_nane')
env. ot her _net hod_name(' anot her arg')

AddOpt i on(opt _str, ..., attr=value, ...)
Adds aloca (project-specific) command-line option. One or more opt _st r values are the strings representing
how the option can be called, while the keyword arguments define attributes of the option. For the most
part these are the same as for the Opt i onPar ser . add_opti on method in the standard Python library
module opt par se, but with a few additional capabilities noted below. See the optparse documentation
[https://docs.python.org/3/library/optparse.html] for a thorough discussion of its option-processing capabilities.
All options added through AddOpt i on are placed in aspecial "Local Options' option group.

In addition to the arguments and values supported by theopt par se add_opt i on method, AddOpt i on alows
setting the nar gs keyword value to astring ' ?' (question mark) to indicate that the option argument for that

Iy
=== SCONS 316

https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/optparse.html

option string may be omitted. If the option string is present on the command line but has no matching option
argument, the value of the const keyword argument is produced as the value of the option. If the option string
is omitted from the command line, the value of the def aul t keyword argument is produced, as usual; if there
isnodef aul t keyword argument inthe AddOpt i on call, None is produced.

opt par se recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_opt i on iscaled to definea- - devi cenane option, it will recognize - - devi ce, - - dev
and so forth aslong asthereis no other option which could a so match to the same abbreviation. Options added via
AddOpt i on do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOpt i on call itself.

Once a new command-line option has been added with AddOpt i on, the option value may be accessed using
Get Opti on orenv. Get Opti on. If theset t abl e=Tr ue argument was supplied in the AddOpt i on call,
the value may also be set later using Set Opt i on or env. Set Opt i on, if conditions in an SConscr i pt

file require overriding any default value. Note however that a value specified on the command line will always
override avalue set in an SConscript file.

Changed in 4.8.0: added the sett abl e keyword argument to enable an added option to be settable via
Set Opti on.

Help text for an option isacombination of the string suppliedinthehel p keyword argument to AddOpt i on and
information collected from the other keyword arguments. Such help is displayed if the - h command line option
isused (but not with - H). Help for al local options is displayed under the separate heading L ocal Options. The
options are unsorted - they will appear in the help text in the order in which the AddOpt i on calls occur.

Example:

AddOpt i on(
'--prefix',
dest='prefix"',
nar gs=1,
type='string',
action='store',
met avar='DI R,
hel p="instal | ati on prefix"',

)
env = Environnment (PREFI X=CGet Opti on("' prefix'))

For that example, the following help text would be produced:

Local Options:
--prefix=D R installation prefix

Help text for local options may be unavailableif the Hel p function has been called, seethe Hel p documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOpt i on which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nar gs keyword is used to specify
more than one following option argument (that is, with avalue of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOpt i on this
way. Future versions of SCons will likely forbid such usage.

Iy
=== SCONS 317

AddPost Action(target, action)

env.AddPost Acti on(t arget, action)
Arrange for the specified act i on to be performed after the specified t ar get has been built. act i on may
be an Action object, or anything that can be converted into an Action object. See the manpage section "Action
Objects’ for a complete explanation.

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin the list.

foo = Program('foo.c')
renpve execute perm ssion from binary:
AddPost Acti on(f oo, Chnmod(' $TARGET', "a-x"))

If at arget isan Al i as, acti on isassociated with the action of the alias, if specified.

AddPr eActi on(t arget, action)

env.AddPr eActi on(t arget, action)
Arrange for the specified act i on to be performed before the specified t ar get is built. act i on may be an
Action object, or anything that can be converted into an Action object. See the manpage section "Action Objects"
for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Note that if any of the targets are built in multiple steps, the action will be invoked just before the action step
that specifically generates the specified target(s). It may not always be obvious if the process is multi-step - for
example, if you use the Pr ogr ambuilder to construct an executable program from a. ¢ source file, scons builds
an intermediate object file first; the pre-action is invoked after this step and just before the link command to
generate the executable program binary. Example:

foo = Program(' foo.c')
AddPr eActi on(foo, 'echo "Running pre-action"')

$ scons -Q

gcc -o foo.o -c foo.c
echo "Runni ng pre-action”
Runni ng pre-action

gcc -o foo foo.o

If at arget isan Al i as, acti on isassociated with the action of the alias, if specified.

Alias(alias, [source, [action]])

env.Alias(alias, [source, [action]])
Createan Aliasnodethat can be used asareferenceto zero or more other targets, specified by theoptional sour ce
parameter. Aliases provide a way to give a shorter or more descriptive name to specific targets, and to group
multiple targets under a single name. The alias name, or an Alias Node object, may be used as a dependency of
any other target, including another aias.

al i as and sour ce may each be a string or Node object, or alist of strings or Node objects; if Nodes are used
for al i as they must be Alias nodes. If sour ce isomitted, the alias is created but has no reference; if selected
for building thiswill result in a“Nothing to be done.” message. An empty alias can be used to define the aliasin
avisible place in the project; it can later be appended to in a subsidiary SConscript file with the actual target(s)
to refer to. The optional act i on parameter specifies an action or list of actions that will be executed whenever
the any of the alias targets are out-of-date.

Iy
=== SCONS 318

Al i as can be called for an existing alias, which appendsthe al i as and/or act i on arguments to the existing
listsfor that alias.

Returns a list of Alias Node objects representing the alias(es), which exist outside of any physical file system.
The alias name space is separate from the name space for tangible targets; to avoid confusion do not reuse target
names as alias names.

Examples:

Alias('install")

Alias('install', '/usr/bin")

Alias(['install', "install-lib"], "/usr/local/lib")
env.Alias('install', ['/usr/local/bin', "/fusr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', 'file2'], "update_ database $SOURCES")

Al | owSubst Excepti ons([exception, ...])
Specifiesthe exceptions that will be ignored when expanding construction variables. By default, any construction
variable expansions that generate a NanmeEr r or or | ndexErr or exception will expandtoa'' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.
If Al'l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
ignored exceptions. Calling it with no arguments means no exceptions will be ignored.
Example:
Requires that all construction variable nanes exist.
(You may wish to do this if you want to enforce strictly
that all construction variables nust be defined before use.)
Al | owSubst Except i ons()
Also allow a string containing a zero-division expansi on
like "${1/ 0}' to evaluate to '".
Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visionError)
Al waysBui | d(target, ...)
env.Al waysBui | d(target, ...)

Marks each given t ar get so that it is aways assumed to be out-of-date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

env.Append(key=val, [...])

Appends value(s) intelligently to construction variables in env. The construction variables and values to add to
them are passed as key=val pairs (Python keyword arguments). env. Append is designed to allow adding
values without having to think about the data type of an existing construction variable. Regular Python syntax
can also be used to manipulate the construction variable, but for that you may need to know the types involved,
for example pure Python lets you directly "add" two lists of strings, but adding a string to a list or alist to a
string requires different syntax - things Append takes care of. Some pre-defined construction variables do have
type expectations based on how SCons will use them: for example $CPPDEFI NES is often a string or alist of
strings, but can aso be alist of tuples or adictionary; while L1 BEM TTERis expected to be acallable or list of

~

'—‘-‘ SCONS 319

callables, and $BUI LDERS is expected to be adictionary. Consult the documentation for the various construction
variables for more details.

The following descriptions apply to both the Append and Pr epend methods, aswell as their Unique variants,
with the differences being the insertion point of the added values and whether duplication is allowed.

val can be amost any type. If env does not have a construction variable named key, then key is simply
stored with a value of val . Otherwise, val is combined with the existing value, possibly converting into an
appropriate type which can hold the expanded contents. There are afew specia cases to be aware of. Normally,
when two strings are combined, the result is a new string containing their concatenation (and you are responsible
for supplying any needed separation); however, the contents of $CPPDEFI NES will be post-processed by adding
aprefix and/or suffix to each entry when the command lineis produced, so SCons keepsthem separate - appending
a string will result in a separate string entry, not a combined string. For $CPPDEFI NES. as well as $LI BS,
and the various * PATH variables, SCons will amend the variable by supplying the compiler-specific syntax (e.g.
prepending a- D or / D prefix for $CPPDEFI NES), so you should omit this syntax when adding values to these
variables. Examples (gcc syntax shown in the expansion of CPPDEFI NES):

env = Envi ronnment (CXXFLAGS="- st d=c11", CPPDEFI NES="RELEASE")

print (f"CXXFLAGS = {env[' CXXFLAGS']}, CPPDEFI NES = {env[' CPPDEFINES']}")
notice including a | eadi ng space i n CXXFLAGS additi on

env. Append(CXXFLAGS=" -0O', CPPDEFI NES="EXTRA")

print (f"CXXFLAGS = {env[' CXXFLAGS']}, CPPDEFI NES = {env[' CPPDEFINES']}")
print (" CPPDEFI NES wi || expand to", env.subst('$_ CPPDEFFLAGS))

$ scons -Q

CXXFLAGS = -std=cll, CPPDEFI NES = RELEASE

CXXFLAGS = -std=c1l -O, CPPDEFI NES = deque([' RELEASE , ' EXTRA'])
CPPDEFI NES wi || expand to - DRELEASE - DEXTRA

scons: ' is up to date.

Because $CPPDEFI NES is intended for command-line specification of C/C++ preprocessor macros, additional
syntax is accepted when adding to it. The preprocessor accepts arguments to predefine a macro name by itself (-

DFQOOfor most compilers, / DFQOfor Microsoft C++), which givesit animplicit value of 1, or can be given with
areplacement value (- DBAR=TEXT). SCons follows these rules when adding to $CPPDEF| NES:

» A string is split on spaces, giving an easy way to enter multiple macros in one addition. Use an = to specify
avalued macro.

A tupleistreated as a valued macro. Use the value None if the macro should not have avalue. It is an error
to supply more than two elements in such atuple.

A listisprocessed in order, adding each item without further interpretation. In this case, space-separated strings
are not split.

» A dictionary is processed in order, adding each key-value pair as a valued macro. Use the value None if the
macro should not have avalue.

Examples:

env = Envi r onment (CPPDEFI NES=" FOO")

pri nt (" CPPDEFI NES =", env[' CPPDEFI NES'])
env. Append(CPPDEFI NES=" BAR=1")
pri nt (" CPPDEFI NES =", env[' CPPDEFI NES'])

env. Append(CPPDEFI NES=[(" OTHER', 2)])

Iy
=== SCONS 320

print (" CPPDEFI NES =", env[' CPPDEFI NES'])

env. Append(CPPDEFI NES={ " EXTRA": "arg"})

print (" CPPDEFI NES =", env[' CPPDEFI NES'])

print (" CPPDEFI NES wi || expand to", env.subst('$_CPPDEFFLAGS))

$ scons -Q

CPPDEFI NES = FOO
CPPDEFI NES = deque([' FOO , 'BAR=1'])

CPPDEFI NES = deque([' FOO, 'BAR=1', ('OTHER, 2)])

CPPDEFI NES = deque([' FOO, 'BAR=1', ('OTHER, 2), ('EXTRA', 'arg')])

CPPDEFI NES wi | | expand to - DFOO - DBAR=1 - DOTHER=2 - DEXTRA=ar g
scons: ' is up to date.

Examples of adding multiple macros:

env = Environment ()
env. Append(CPPDEFI NES=[(" ONE", 1), "TWO', ("THREE',)])

pri nt (" CPPDEFI NES =", env[' CPPDEFI NES'])
env. Append(CPPDEFI NES={"FOUR': 4, "FIVE': None})
pri nt (" CPPDEFI NES =", env[' CPPDEFI NES'])

print (" CPPDEFI NES wi || expand to", env.subst('$_CPPDEFFLAGS))

$ scons -Q
CPPDEFI NES
CPPDEFI NES
CPPDEFI NES wi | | expand to - DONE=1 - DTWO - DTHREE - DFOUR=4 - DFl VE
scons: ' is up to date.

[("ONE', 1), "TWO, ('THREE ,)]

Changed in version 4.5: clarified the use of tuples vs. other types, handling is now consistent across the four
functions.

env = Environment ()
env. Append(CPPDEFI NES=(" MACROL", " MACRX2"))

pri nt (" CPPDEFI NES =", env[' CPPDEFI NES'])
env. Append(CPPDEFI NES=[(" MACROB", "MACRM")])
pri nt (" CPPDEFI NES =", env[' CPPDEFI NES'])

print (" CPPDEFI NES wi || expand to", env.subst('$_CPPDEFFLAGS))

$ scons -Q

CPPDEFI NES = (' MACROL', ' MACRC2')

CPPDEFI NES = deque([' MACROL', ' MACR®2', (' MACRGBZ', 'MACRM')])
CPPDEFI NES wi | | expand to - DVACROL - DVACRO2 - DMACROB=NACRO4
scons: ' is up to date.

See $CPPDEFI NES for more details.

Appending astring val to adictionary-typed construction variable entersval asthe key in the dictionary, and
None asitsvalue. Using atupletypeto supply akey-value pair only worksfor the specia case of $CPPDEFI NES
described above.

Although most combinations of typeswork without needing to know the details, some combinations do not make
sense and Python raises an exception.

Iy
=== SCONS 321

deque([("ONE', 1), '"TWO, ('THREE ,), ('FOQUR, 4), ('FIVE , None)])

env

env

Bui
env

When using env. Append to modify construction variables which are path specifications (conventionally, the
names of such end in PATH), it isrecommended to add the values as alist of strings, even if you are only adding
asingle string. The same goes for adding library namesto $LI BS.

env. Append(CPPPATH=["#/ i ncl ude"])
Seealso env. AppendUni que, env. Prepend and env. Pr ependUni que.

AppendENVPat h(nhane, newpat h, [envnane, sep, del ete_existing=Fal se])

Append directory paths from newpat h to a search-path entry namne in construction variable envnane in the
current enviromment (env). If envnane is not given, the default is" ENV" (see $ENV). envnane is expected
to refer to adictionary-like object; if it doesnot existin env it will be created asan initially empty dict. newpat h
may be specified asastring, adirectory node, or alist of strings. If astring, it may contain multiple paths separated
by the system path separator (0s. pat hsep), or, if specified, by the value of sep. Top-relative path strings
(starting with #) are recognized. The type of the existing value of nane is preserved.

Pathswill only appear once. Duplicate pathsin newpat h areremoved, preserving thelast occurrenceto maintain
path order. If del et e_exi sti ng is true (the default), existing duplicates are removed before appending,
otherwise, new duplicates are skipped. During comparisons, paths are normalized, to avoid issues with case
differences (on case-insensitive filesystems) and with relative paths that may refer back to the same directory.
The stored values are not modified by this process.

Example:

print('before:', env['ENV][' 1 NCLUDE])

i ncl ude_path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:', env['ENV][' I NCLUDE])

Yields:

before: /foo:/biz
after: /biz:/fool/bar:/foo

Seeasoenv. PrependENVPat h.

AppendUni que(key=val, [...], [del ete_existing=Fal se])

Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env. Append, except that values that would become duplicates are not added. If del et e_exi sti ngis
set to atrue value, then for any duplicate, the existing instance of val isfirst removed, then val is appended,
having the effect of moving it to the end.

Example:

env. AppendUni que(CCFLAGS=' -g', FOO=['fo0.yyy'])
Seealsoenv. Append, env. Prepend and env. Pr ependUni que.

| der (action, [arguments])

.Bui | der (action, [argunents])

Creates a Builder object for the specified act i on. See the manpage section "Builder Objects' for a complete
explanation of the arguments and behavior.

~

'—‘—' SCONS 322

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetime it is called using the construction variables in the env construction
environment through which env. Bui | der wascaled. TheBui | der form delays all variable expansion until
after the Builder object is actualy called.

CacheDir (cache_dir, custom cl ass=None)

env.CacheDir (cache_dir, custom cl ass=None)
Direct sconsto maintain aderived-file cacheincache_di r . The derived filesin the cache will be shared among
all the builds specifying thesamecache_di r . Specifyingacache_di r of None disablesderived file caching.

Calling the environment method env. CacheDi r limits the effect to targets built through the specified
construction environment. Calling the global function CacheDi r sets a global default that will be used by
all targets built through construction environments that do not set up environment-specific caching by calling
env. CacheDir.

Caching behavior can be configured by passing a specialized cache class as the optional cust om cl ass
parameter. This class must be a subclass of SCons. Cachebi r. CacheDi r. SCons will internally invoke the
custom class for performing caching operations. If the parameter is omitted or set to None, SCons will use the
default SCons. CacheDi r. CacheDi r class.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if a file with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved “file' from cache instead of the normal build message. If the derived fileis not present in
the cache, sconswill build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

TheRetrieved “file' from cache messagesare useful for human consumption, but less useful when
comparing log files between scons runs which will show differences that are noisy and not actualy significant.
To disable, usethe - - cache- showoption. With this option, scons changes printing to always show the action
that would have been used to build the file without caching.

Derived-file caching may be disabled for any invocation of scons by giving the - - cache- di sabl e command
line option; cache updating may be disabled, |eaving cachefetching enabled, by givingthe- - cache- r eadonl y
option.

If the - - cache- f or ce option is used, scons will place a copy of all derived files into the cache, even if they
already existed and were not built by thisinvocation. Thisisuseful to populate acachethefirsttimeacache_di r
isused for abuild, or to bring a cache up to date after abuild with cache updating disabled (- - cache- di sabl e
or - - cache- r eadonl y) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool areimpossible to predict or prohibitively large.

Note that (at thistime) SCons provides no facilities for managing the derived-file cache. It is up to the devel oper
to arrange for cache pruning, expiry, access control, etc. if needed.

Cl ean(targets, files)

env.Cl ean(targets, files)
Set additional f i | es for remova when any of t ar get s are selected for cleaning (- ¢ command line option).
targets andfil es can each be asingle filename or node, or alist of filenames or nodes. These can refer to
files or directories. Calling this method repeatedly has an additive effect.

The related NoCd ean method has higher priority: any target specified to NoCl ean will not be cleaned even if
asogivenasafi |l es parameter to Cl ean.

Examples:

Iy
=== SCONS 323

Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', "hello.c"))
Clean(['foo', 'bar'], 'sonething else to clean')

SConsdoes not directly track directories astargets - they are created if needed and not normally removed in clean
mode. Inthisexample, installing the project creates a subdirectory for the documentation. TheCl ean call ensures
that the subdirectory is removed if the project is uninstalled.

Cl ean(docdir, os.path.join(docdir, projectnane))

env.Cl one([key=val, ...])
Returns an independent copy of a construction environment. If there are any unrecognized keyword arguments
specified, they are added as construction variablesin the copy, overwriting any existing valuesfor those keywords.
See the manpage section "Construction Environments' for more details.

Example:

env2 = env. d one()
env3 = env. d one(CCFLAGS=' -g')

Alist of t ool s and at ool pat h may be specified, asin the Envi r onnment constructor:

def MyTool (env):
env[' FOO] = 'bar'

envd = env. C one(tool s=[' nsvc', MyTool])

Thepar se_f | ags keyword argument is also recognized, to allow merging command-line style argumentsinto
the appropriate construction variables (see env. Mer geFl ags).

create an environnment for conpiling progranms that use wxW dgets
wx_env = env. Cl one(parse_flags='!wx-config --cflags --cxxflags')

Thevari abl es keyword argument is also recognized, to allow (re)initializing construction variables from a
Var i abl es object.

Changed in version 4.8.0: thevar i abl es parameter was added.

Command(t arget, source, action, [key=val, ...])

env.Command(t ar get, source, action, [key=val, ...])
Creates an anonymous builder and calls it, thus recording act i on to build t ar get from sour ce into the
dependency tree. This can be more convenient for a single special-case build than having to define and add a
new named Builder.

The Command function accepts the sour ce_scanner andt ar get _scanner keyword arguments which
are used to specify custom scanners for the specified sources or targets. The value must be a Scanner object. For
example, theglobal Di r Scanner object can beusedif any of the sourceswill be directoriesthat must be scanned
on-disk for changesto files that aren't already specified in other Builder or function calls.

The Conmand function also accepts the source_factory and target factory keyword arguments
which are used to specify factory functionsto create SCons Nodes from any sources or targets specified as strings.
If any sources or targets are already Node objects, they are not further transformed even if afactory is specified
for them. The default for each isthe Ent r y factory.

Iy
=== SCONS 324

Thesefour arguments, if given, are used in the creation of the Builder. Other Builder-specific keyword arguments
are not recognized as such. See the manpage section "Builder Objects’ for more information about how these
arguments work in a Builder.

Any remaining keyword arguments are passed on to the generated builder when it is called, and behave
as described in the manpage section "Builder Methods', in short: recognized arguments have their specified
meanings, whiletherest are used to override any same-named existing construction variablesfrom the construction
environment.

act i on can be an external command, specified as a string, or a callable Python object; see the manpage section
"Action Objects’ for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@ to suppress printing the command in question, or by a hyphen (-) to ignore the exit
status of the external command.

Examples:

env. Comand(
target='foo0.out',
source='foo0.in",
acti on="$FO0O BU LD < $SOURCES > $TARCGET"

env. Comand(
target =' bar. out',
source="bar.in",
action=["rm -f $TARGET", "$BAR BU LD < $SOURCES > $TARCET"],
ENV={' PATH : '/usr/local /bin/"},

i mport os
def rename(env, target, source):
os.renane(’'.tnp', target[0])

env. Comand(
target =' baz. out',
source='baz.in",
action=["$BAZ BU LD < $SOURCES > .tnp", renane],

)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entriesthey are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Di r or env. Di r functions.

Examples:

env. Command(' ddd.list', Dir('ddd"), 'Is -1 $SOURCE > $TARGET')

env[' DISTDIR] = 'destination/directory'
env. Command(env. Dir (' $DI STDIR)), None, make_distdir)

Also notethat SConswill usually automatically create any directory necessary to hold atarget file, so you normally
don't need to create directories by hand.

Iy
=== SCONS 325

Confi gure(env, [customtests, conf_dir, log_file, config_h])
env.Configure([customtests, conf_dir, log_file, config_h])
Creates a Conf i gur e object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts' for a complete explanation of the arguments and behavior.

DebugOpti ons([j son])
Allows setting options for SCons debug options. Currently, the only supported value is json which sets the path
to the JSON file created when - - debug=j son is set.

DebugOpt i ons(j son="#/ bui | d/ out put/scons_stats.json")

New in version 4.6.0.

Deci der (f uncti on)

env.Deci der (f unct i on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
function.functi on can bethe name of afunction or one of the following strings that specify a predefined
decider function:

"content"

Specifies that a target shall be considered out-of-date and rebuilt if the dependency's content has changed
sincethelast timethetarget was built, as determined by performing achecksum on the dependency's contents
using the selected hash function, and comparing it to the checksum recorded the last time the target was built.
cont ent isthe default decider.

Changed in version 4.1: The decider was renamed to cont ent since the hash function is now selectable.
The former name, MD5, can still be used as a synonym, but is deprecated.

“content-tinmestanmp"

nt'

||t'

Specifies that a target shall be considered out-of-date and rebuilt if the dependency's content has changed
since the last time the target was built, except that dependencies with atimestamp that matches the last time
the target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar
to the cont ent behavior of always checksumming file contents, with an optimization of not checking the
contents of files whose timestamps haven't changed. The drawback is that SCons will not detect if afile's
content has changed but its timestamp is the same, as might happen in an automated script that runs a build,
updates afile, and runs the build again, all within a single second.

Changedinversion 4.1: Thedecider wasrenamedtocont ent - t i mest anp sincethe hash functionisnow
selectable. The former name, MD5- t | nest anp, can till be used as a synonym, but is deprecated.

nmest anp- newer "

Specifiesthat atarget shall be considered out-of-date and rebuilt if the dependency's timestamp is newer than
the target file's timestamp. Thisisthe behavior of the classic Make utility, and nak e can be used a synonym
forti mest anp- newer .

nmest anp- mat ch”

Specifies that a target shall be considered out-of-date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will also berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

Examples:

Use exact timestanp matches by default.

~

'—‘—' SCONS 326

Deci der (' ti mestanp-mat ch')

Use hash content signatures for any targets built
wth the attached construction environnent.
env. Deci der (' content')

In addition to the above already-available functions, the f unct i on argument may be a Python function you
supply. Such afunction must accept the following four arguments:

dependency
The Node (file) which should cause thet ar get to berebuilt if it has"changed" sincethelast timet ar get
was built.

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
asr epo_node=None). A caler will normally only set thisif the target only existsin a Repository.

Thef unct i on should return avalue which evaluates Tr ue if the dependency has "changed" since the last
time the t ar get was built (indicating that the target should be rebuilt), and a value which evaluates Fal se
otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteriaare appropriate. Ignoring some or al of the function arguments is perfectly normal.

Example:

def ny_deci der (dependency, target, prev_ni, repo_node=None):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

Default(target[, ...])

env.Defaul t(target[, ...])
Specify default targets to the SCons target selection mechanism. Any call to Def aul t will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection”).

t ar get may be one or more strings, alist of strings, aNodeLi st asreturned by a Builder, or None. A string
t ar get may be the name of afile or directory, or atarget previously defined by acal to Al i as (defining the
alias later will still create the dias, but it will not be recognized as a default). Callsto Def aul t are additive. A
t ar get of None will clear any existing default target list; subsequent calls to Def aul t will add to the (now
empty) default target list like normal.

Both forms of this call affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Def aul t isavailablein the DEFAULT_TARGETS list (see below).

Examples:

Iy
=== SCONS 327

Def

Dep
env

env

Default('foo', 'bar', 'baz')

env. Default(['a", "b', "c'])

hell o = env. Progran(' hell o', "hello.c")
env. Def aul t (hel | o)

aul t Envi ronment ([key=val ue, ...])

Instantiates and returns the global construction environment object. The Default Environment is used internally
by SCons when executing a global function or the global form of a Builder method that requires access to a
construction environment.

On the first call, arguments are interpreted as for the Envi r onnent function. The Default Environment is a
singleton; subsequent callsto Def aul t Envi r onnment return the already-constructed object, and any keyword
arguments are silently ignored.

The Default Environment can be modified after instantiation, similar to other construction environments, although
some construction environment methods may be unavailable. Modifying the Default Environment has no effect
on any other construction environment, either existing or newly constructed.

It is not necessary to explicitly call Def aul t Envi r onment . SCons instantiates the default environment
automatically when the build phase begins, if has not already been done. However, calling it explicitly provides
the opportunity to affect and examineits contents. I nstantiation occurs even if nothing in the build system appears
to useit, dueto internal uses.

If the project SConscript files do not use globa functions or Builders, a small
performance gain may be achieved by caling Def aul t Envi ronnent with an empty tools list
(Def aul t Envi ronnent (t ool s=[])). Thisavoids the tool initialization cost for the Default Environment,
which ismainly of interest in the test suite where scons is launched repeatedly in a short time period.

ends(t arget, dependency)

.Depends(t ar get, dependency)

Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usually the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for thefile.

Example:

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env. Library('mylib.c")
installed |lib = env.Install ('lib", nylib)
bar = env. Program(' bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program

(Note that this is for exanple only. A "real"” library

dependency woul d normal Iy be configured through the $LIBS
and $LI BPATH vari abl es, not using an env. Depends() call.)

env. Depends(bar, installed |ib)

.Det ect (pr ogs)
Find an executable from one or more choices. pr ogs may be a string or a list of strings. Returns the first
value from pr ogs that was found, or None. Executable is searched by checking the paths in the execution

~

'—‘-‘ SCONS 328

environment (env[' ENV'] [' PATH]). On Windows systems, additionally appliesthefilename suffixesfound
in the execution environment (env[' ENV'] [' PATHEXT']) but will not include any such extension in the
return value. env. Det ect isawrapper around env. Wher el s.

env.Dictionary(var, ...], [as_dict=])
Return an object containing construction variablesfromenv. If var isomitted, al the construction variableswith
their values are returned in adict. If var isspecified, and as_di ct istrue, the specified construction variables
are returned in a dict; otherwise (the default, for backwards compatibility), values only are returned, as a scalar
if onevar isgiven, or asalist if multiples.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC, 'CCFLAGS , 'CCCOM)

Note

The object returned by env. Di cti onary should be treated as a read-only view into the construction
variables. Some construction variablesrequire special internal handling, and modifying them through the
env. Di cti onary object can bypassthat handling and cause datainconsistencies. The primary use of
env. Di cti onary isfor diagnostic purposes - it is used widely by test cases specifically because it
bypasses the special handling so that behavior can be verified.

Changed in 4.9.0: as_di ct added.

Dir(name, [directory])

env.Dir (name, [directory])
Returns Directory Node(s). A Directory Node is an object that represents a directory. nane can be arelative or
absolute path or alist of such paths. di r ect or y isan optional directory that will be used asthe parent directory.
If nodi rect ory isspecified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"Filesystem Nodes" for more information.

env.Dunp([var, ...], [fornmat=TYPE])
Serialize construction variablesfrom env toastring. If var isomitted, all the construction variablesare serialized.
If one or morevar values are supplied, only those variables and their values are serialized.

The optional f or mat string selects the serialization format:

pretty
Returns a pretty-printed representation of the construction variables - the result will ook like a Python dict
(thisisthe default).

j son
Returns a JSON-formatted representation of the variables. The variables will be presented as a JSON object
literal, the JSON equivalent of a Python dict..

Changed in 4.9.0: Morethan onekey can be specified. The returned string always|ookslike adict (or equivalent
in other formats); previously asingle key serialized only the value, not the key with the value.

Examples: this SConst r uct

Iy
=== SCONS 329

env = Environment ()
print (env. Dunp(' CCCOM))
print(env. Dump(' CC, 'CCFLAGS' , format='json'))

will print something like:

{'COCOM : ' $CC -0 $TARGET -c $CFLAGS $CCFLAGS $_CCCOMOOM $SOURCES' }
{

"cc: " gcc" ,

" CCFLAGS": []
}

While this SConst r uct :

env = Environnent ()
print (env. Dunp())

will print something like:
{ "AR: 'ar',

" ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET' ,
"ARFLAGS : ['r'],

"AS . 'as',
" ASCOM : ' $AS $ASFLAGS -0 $TARGET $SOURCES' ,

" ASFLAGS' : [],

Ensur ePyt honVer si on(maj or, minor)
Ensure that the Python version is at least maj or .imi nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Ensur ePyt honVer si on(2, 2)

Ensur eSConsVer si on(maj or, mnor, [revision])
Ensure that the SCons version is at least maj or . mi nor, or maj or. m nor. revi sion. if revi sion is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

Ensur eSConsVer si on(0, 14)

Ensur eSConsVer si on(0, 96, 90)

Envi ronnent ([key=val ue, ...])

env.Envi ronnent ([key=val ue, ...])
Return anew construction environment initialized with the specified key=val ue pairs. The keyword arguments
parse_fl ags,pl atformt ool pat h,t ool s andvari abl es are specially recognized and do not lead to
construction variable creation. See the manpage section "Construction Environments' for more details.

Iy
=== SCONS 330

Execut e(action, [actionargs ...])

env.Execut e(action, [actionargs ...])
Executes an Action. act i on may be an Action object or it may be a command-line string, list of commands,
or executable Python function, each of which will first be converted into an Action object and then executed.
Any additional argumentsto Execut e are passed ontothe Act i on factory function which actually createsthe
Action object (see the manpage section Action Objects for a description). Example:

Execut e(Copy('file.out', "file.in"))

Execut e performsitsactionimmediately, as part of the SConscript-reading phase. There are no sourcesor targets
declared in an Execut e call, so any objects it manipulates will not be tracked as part of the SCons dependency
graph. In the example above, neither fi | e. out norfil e. i n will betracked objects.

Execut e returns the exit value of the command or return value of the Python function. scons prints an error
messageif the executed act i on fails (exitswith or returns anon-zero value), however it does not, automatically
terminate the build for such a failure. If you want the build to stop in response to a failed Execut e call, you
must explicitly check for a non-zero return value:

i f Execute("nkdir sub/dir/ectory"):
The nkdir failed, don't try to build.
Exit(1)

4

it([value])
Thistells sconsto exit immediately with the specified val ue. A default exit value of O (zero) isused if no value
is specified.

Export ([vars...], [key=value...])

env.Export ([vars...], [key=value...])
Exports variables for sharing with other SConscript files. The variables are added to a globa collection where
they can beimported by other SConscript files. var s may be one or more strings, or alist of strings. If any string
contains whitespace, it is split automatically into individual strings. Each string must match the name of avariable
that isin scope during evaluation of the current SConscript file, or an exception is raised.

A var s argument may also be adictionary or individual keyword arguments; in accordance with Python syntax
rules, keyword arguments must come after any non-keyword arguments. The dictionary/keyword form can be
used to map the local name of a variable to a different name to be used for imports. See the Examples for an
illustration of the syntax.

Export calls are cumulative. Specifying a previously exported variable will replace the previous value in the
collection. Both local variables and global variables can be exported.

To use an exported variable, an SConscript must call | nport to bring it into its own scope. Importing creates
an additional reference to the object that was originally exported, so if that object is mutable, changes made will
be visible to other users of that object.

Examples:

env = Environment ()

Make env available for all SConscript files to Inport().

Export ("env")

package = ' my_nane'

Iy
=== SCONS 331

Make env and package avail able for all SConscript files:.
Export ("env", "package")

Make env and package avail able for all SConscript files:
Export (["env", "package"])

Make env avail abl e using the name debug:
Export (debug=env)

Make env avail abl e using the name debug:
Export ({"debug”: env})

Note that the SConscri pt function also supports an export s argument that allows exporting one or more
variables to the SConscript files invoked by that call (only). See the description of that function for details.

Fil e(nane, [directory])

env.Fi | e(nane, [directory])
Returns File Node(s). A File Nodeis an object that represents afile. nane can be arelative or absolute path or a
list of such paths. di r ect or y isan optional directory that will be used asthe parent directory. If nodi r ect ory
is specified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "Filesystem Nodes'
for more information.

FindFile(file, dirs)

env.FindFile(file, dirs)
Search for f i | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dirl", "dir2'])
Fi ndl nstal | edFi | es()
env.Fi ndl nstal | edFi | es()
Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install (*/bin', ['executable a', 'executable b'])
#wWll return the file node |i st

['/bin/executable_a', '/bin/executable b']

Fi ndl nstal | edFi | es()

Install (*/1ib", ['some_library'])

Iy
=== SCONS 332

wll return the file node |i st
['/bin/executable a', '/bin/executable b, '/lib/some_library']
Fi ndl nstal | edFi | es()

Fi ndPat hDi r s(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthepat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $L1 BPATH,
€tc.).

Note that use of Fi ndPat hDi rs is generaly preferable to writing your own pat h_functi on for the
following reasons: 1) The returned list will contain all appropriate directories found in source trees (when
Vari ant Di r is used) or in code repositories (when Reposi t ory or the - Y option are used). 2) scons will
identify expansions of var i abl e that evaluate to the same list of directories as, in fact, the same list, and avoid
re-scanning the directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
Code to scan file contents goes here...
return include files

scanner = Scanner (name = 'myscanner"',
function = ny_scan,
pat h_function = Fi ndPat hDi rs(' MYPATH))

Fi ndSour ceFi | es(node=""."")
env.Fi ndSour ceFi | es(node=""."")
Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

Thisfunction is a convenient method to select the contents of a Source Package.
Example:

Program(' src/ main_a.c')

Program(' src/ main_b.c")

Program(' main_c.c')

returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

returns ['src/main_b.c', "src/main_a.c' |
Fi ndSour ceFil es('src')

Asyou can see, build support files (SConst r uct inthe above example) will also be returned by this function.

Fl at t en(sequence)

env.Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by

Iy
=== SCONS 333

callsto Builders; other Builders will automatically flatten lists specified asinput, but direct Python manipulation
of these lists does not.

Examples:

f oo
bar

oj ect (' foo.c')
oj ect (' bar.c')

Because " foo' and “bar' are lists returned by the Cbject() Buil der,
“objects' will be a list containing nested |ists:
objects = ['fl.0', foo, 'f2.0', bar, 'f3.0']

Passing such a list to another Builder is all right because
the Builder will flatten the |list automatically:
Pr ogram(source = obj ects)

|If you need to nmanipulate the list directly using Python, you need to
call Flatten() yourself, or otherw se handl e nested lists:
for object in Flatten(objects):

print(str(object))

Get Bui | dFai | ur es()
Returnsalist of exceptionsfor the actionsthat failed while attempting to build targets. Each element in the returned
listisaBui | dEr r or object with the following attributes that record various aspects of the build failure:

. node The node that was being built when the build failure occurred.

. st at us The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

. errstr The SCons error string describing the build failure. (This is often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

. fil ename The name of the file or directory that actually caused the failure. This may be different from the
. node attribute. For example, if an attempt to build atarget named sub/ di r / t ar get failsbecausethesub/

di r directory could not be created, then the . node attribute will besub/ di r/ t ar get butthe. fil enane
attribute will be sub/ di r .

. execut or The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

. acti on The actual SCons Action object that failed. Thiswill be one specific action out of the possible list of
actions that would have been executed to build the target.

. command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Notethat the Get Bui | dFai | ur es functionwill alwaysreturn an empty list until any build failure has occurred,
which meansthat Get Bui | dFai | ur es will dwaysreturn an empty list whilethe SConscr i pt filesarebeing
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python at exi t . r egi st er () function. Example:

i mport atexit

Iy
=== SCONS 334

def print_build failures():
from SCons. Scri pt inmport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))

atexit.register(print_build failures)

GetBuil dPath(file, [...])

env.CetBuil dPat h(file, [...])
Returns the scons path name (or names) for the specified f i | e (or files). The specified f i | e or files may be
scons Nodes or strings representing path names.

Get LaunchDir ()
Returns the absol ute path name of the directory from which sconswasinitially invoked. This can be useful when
usingthe- u, - Uor - Doptions, which internally change to the directory in which the SConst r uct fileisfound.

Get Opt i on(nane)

env.Get Opt i on(nane)
Query the value of settable option nane, which may have been set on the command line, via option defaults,
or using the Set Opt i on function. The value of the option is returned in a type matching how the option was
declared - see the documentation of the corresponding command line option for information about each specific
option.

nane can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. name can be also be the destination variable name from a project-specific option added
using the AddOpt i on function, aslong as that addition has been processed prior to the Get Opt i on call inthe
SConscri pt files.

Query name Command-line argument Notes

cache_debug - -cache-debug

cache_di sabl e --cache-di sabl e, --no-
cache

cache_force --cache-force, --cache-
popul at e

cache_readonly --cache-readonly

cache_show --cache-show

cl ean -c,--clean,--renove

clinmb _up -D,-U,-u,--up,--search_up

config --config

debug - -debug

directory -C,--directory

di skcheck - -di skcheck

duplicate --duplicate

enabl e_virtual env --enabl e-virtual env

experi nent al --experi nment al Snce4.2.

file -f, --file, --makefile, --
sconstruct

Iy
=== SCONS 335

Query name Command-line argument Notes

hash_chunksi ze - - hash- chunksi ze Replaces md5_chunksi ze. Snce
4.2

hash_f or nat --hash-f or nmat Snce4.2

hel p -h,--help

i gnore_errors -i,--ignore-errors

i gnore_virtual env --ignore-virtual env

implicit_cache --inmplicit-cache

i mplicit_deps_changed --inplicit-deps-changed

i mplicit_deps_unchanged |--inplicit-deps-

unchanged

i ncl ude_dir -1,--include-dir

i nstall _sandbox --install - sandbox Available only if thei nst al | tool
has been called

keep_goi ng -k,--keep-goi ng

max_drift --max-drift

md5_chunksi ze - - hash- chunksi ze Replaced by hash_chunksi ze.
Deprecated since 4.2

no_exec -n, --no-exec, --just-

print,--dry-run,--recon

no_progress -Q

num j obs -j,--jobs

package_type - - package-type Available only if the packagi ng
tool has been called

profile file --profile

guestion -(,--question

random --random

repository -Y,--repository,--srcdir

si |l ent -s,--silent,--quiet

site dir --site-dir,--no-site-dir

stack_si ze --stack-size

taskmastertrace file --taskmastertrace

tree_printers --tree

war n --warn, - -warni ng

Get SConsVer si on()
Returnsthe current SCons version in the form of aTuple[int, int, int], representing the major, minor, and revision
values respectively. Added in 4.8.0.

A ob(pattern, [ondi sk=True, source=Fal se, strings=Fal se, exclude=None])

env.d ob(pattern, [ondisk=True, source=Fal se, strings=Fal se, exclude=None])
Returns a possibly empty list of Nodes (or strings) that match pathname specification patt ern. pattern
can be absolute, top-relative, or (most commonly) relative to the directory of the current SConscri pt file.
A ob matches both files stored on disk and Nodes which SCons aready knows about, even if any corresponding

Iy
=== SCONS 336

fileis not currently stored on disk. The environment method form (env. A ob) performs string substitution on
pat t er n and returns whatever matches the resulting expanded pattern. The results are sorted, unlike for the
similar Python gl ob. gl ob function, to ensure build order will be stable.

pat t er n can contain POSI X -style shell metacharacters for matching:

Pattern Meaning

* matches everything

? matches any single character

[seq] matches any character in seq (can be alist or arange).
[!'seq] matches any character not in seq

For a literal match, wrap the metacharacter in brackets to escape the norma behavior. For example, ' [?]"'
matches the character ' ?" .

Filenames starting with a dot are specially handled - they can only be matched by patterns that start with a dot
(or have a dot immediately following a pathname separator character, or slash), they are not not matched by the
metacharacters. M etacharacter matches also do not span directory separators.

A ob understands repositories (see the Reposi t or y function) and source directories (seethe Var i ant Di r
function) and returns aNode (or string, if so configured) match in the local (SConscript) directory if a matching
Node is found anywhere in a corresponding repository or source directory.

If the optional ondi sk argument evaluates false, the search for matches on disk is disabled, and only matches
from already-configured File or Dir Nodes are returned. The default isto return Nodes for matcheson disk aswell.

If the optional sour ce argument evaluates true, and the local directory isavariant directory, then @ ob returns
Nodes from the corresponding source directory, rather than the local directory.

If the optional st ri ngs argument evaluates true, G ob returns matches as strings, rather than Nodes. The
returned strings will be relative to the local (SConscript) directory. (Note that while this may make it easier
to perform arbitrary manipulation of file names, it loses the context SCons would have in the Node, o if the
returned strings are passed to a different SConscri pt file, any Node trandation there will be relative to that
SConscri pt directory, not to the original SConscr i pt directory.)

The optional excl ude argument may be set to a pattern or a list of patterns describing files or directories to
filter out of the match list. Elements matching a least one specified pattern will be excluded. These patterns use
the same syntax asfor pat t er n.

Examples:

Program("foo", dob("*.c"))

Zip("/tnmp/everything”, dob(".??*") + Gob("*"))

sources = @ ob("*.cpp", exclude=["os_* specific_*.cpp"]) \
+ dob("os % _specific_*.cpp" % current OS)

Hel p(t ext, append=Fal se, |ocal onl y=Fal se)
env.Hel p(t ext, append=Fal se, |ocal only=Fal se)
Addst ext to the help message shown when sconsis called with the - h or - - hel p argument.

Onthefirst call toHel p, if append isFal se (the default), any existing help text is discarded. The default help
text isthe help for the scons command itself plus help collected from any project-local AddOpt i on calls. Thisis

Iy
=== SCONS 337

the help printed if Hel p has never been called. If append isTr ue, t ext isappended to the existing help text.
If| ocal _onl yisasoTr ue (thedefaultisFal se), the project-local help from AddOpt i on callsispreserved
in the help message but the scons command help is not.

Subsequent callsto Hel p ignore the keyword arguments append and | ocal _onl y and always append to the
existing help text.

Changed in 4.6.0: added | ocal _onl y.

I gnor e(t arget, dependency)

env.l gnore(t arget, dependency)
Ignores dependency when deciding if t ar get needsto berebuilt. t ar get and dependency can each be
asingle filename or Node or alist of filenames or Nodes.

| gnor e can aso be used to remove a target from the default build by specifying the directory the target will
bebuiltinast ar get and the file you want to skip selecting for building asdependency. Note that this only
removes the target from the default target selection algorithm: if it is a dependency of another object being built
SCons till builds it normally. See the third and forth examples below.

Examples:

env. |l gnore('foo', 'foo.c')
env.lgnore('bar', ['barl.h', "bar2.h'])
env.lgnore('."', 'foobar.obj")

env. I gnore(' bar', 'bar/foobar.obj"')

| mport(vars...)

env.l nport (vars...)
Imports variables into the scope of the current SConscript file. var s must be strings representing names of
variables which have been previousdly exported either by the Export function or by the export s argument
tothe SConscri pt function. Variables exported by the SConscr i pt call take precedence. Multiple variable
names can be passedto | npor t asseparate arguments, asalist of strings, or aswordsin a space-separated string.
Thewildcard " *" can be used to import all available variables.

If the imported variable is mutable, changes made locally will be reflected in the object the variable is bound to.
This allows subsidiary SConscript files to contribute to building up, for example, a construction environment.

Examples:

| mport ("env")

| mport ("env", "variable")
| mport (["env", "variable"])
I mport ("*")

Literal (string)
env.Literal (string)
The specified st r i ng will be preserved as-is and not have construction variables expanded.

Local (t argets)

env.Local (t argets)
The specified t ar get s will have copies made in the local tree, even if an aready up-to-date copy existsin a
repository. Returns alist of the target Node or Nodes.

Iy
=== SCONS 338

env.Mer geFl ags(arg, [unique])
Mergesvaluesfromar g into construction variablesinenv. If ar g isadictionary, each key-value pair represents
a construction variable name and the corresponding flags to merge. If ar g is not a dictionary, Mer geFl ags
attempts to convert it to one before the values are merged. env. Par seFl ags is used for this, so values to
be converted are subject to the same limitations: Par seFl ags has knowledge of which construction variables
certain flags should go to, but not al; and only for GCC and compatible compiler chains. ar g must be asingle
object, so to pass multiple strings, enclose them in alist.

If uni que istrue (the default), duplicate values are not retained. In case of duplication, any construction variable
names that end in PATH keep the left-most value so the path search order is not altered. All other construction
variables keep the right-most value. If uni que isfalse, values are appended even if they are duplicates.

Examples:

Add an optinization flag to $CCFLAGS.
env. MergeFl ags({' CCFLAGS : '-@3'})

Conbi ne the flags returned fromrunni ng pkg-config with an optim zation
flag and nerge the result into the construction vari abl es.
env. MergeFl ags([' ! pkg-config gtk+-2.0 --cflags', '-Q3'])

Combi ne an optim zation flag with the flags returned from runni ng pkg-config
for two distinct packages and nerge into the construction vari abl es.
env. Mer geFl ags(

[

e
"I pkg-config gtk+-2.0 --cflags --libs',
"I pkg-config |ibpngl2 --cflags --1ibs',
]
)
NoCache(t arget, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDi r method has been activated. The
specified targets may be alist or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as alist. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache(' foo. el f')
NoCache(env. Progran{' hell o', "hello.c'))

NoCl ean(t argets, ...)

env.Nod ean(targets, ...)
Specifies files or directories which should not be removed whenever a specified t ar get (or its dependencies)
is selected and clean mode is active (- ¢ command line option). t ar get s may be one or more file or directory
names or nodes, and/or lists of names or nodes. NoCl ean can be called multiple times.

Calling NoCl ean for atarget overridescalling Cl ean for the sametarget, so any targets passed to both functions
will not be removed in clean mode.

Iy
=== SCONS 339

Examples:

NoCl ean(' foo. el f')
NoCl ean(env. Progran{' hell o', "hello.c"))

env.Par seConfi g(command, [function, unique])
Updates the current construction environment with the values extracted from the output of running external
conmand, by passing it to ahelper f unct i on. command may be a string or alist of strings representing the
command anditsarguments. If f unct i onisomittedor None, env. Mer geFl ags isused. By default, duplicate
values are not added to any construction variables; you can specify uni que=Fal se to allow duplicate values
to be added.

command is executed using the SCons execution environment (that is, the construction variable $ENV in
the current construction environment). If command needs additional information to operate properly, that
needs to be set in the execution environment. For example, pkg-config may need a custom value set in the
PKG_CONFI G_PATH environment variable.

env. Mer geFl ags needs to understand the output produced by command in order to distribute it to
appropriate construction variables. env. Mer geFl ags uses a separate function to do that processing - see
env. Par seFl ags for the details, including a table of options and corresponding construction variables. To
provide alternative processing of the output of cormand, you can supply a custom f unct i on, which must
accept three arguments: the construction environment to modify, a string argument containing the output from
running comand, and the optional uni que flag.

Par seDepends(fi | enanme, [nust_exist, only_one])

env.Par seDepends(fi | enanme, [nust_exist, only_one])
Parsesthecontentsof f i | enane asalist of dependenciesinthe style of Make or mkdep, and explicitly establishes
all of the listed dependencies.

By default, it isnot an error if f i | enane does not exist. The optional nust _exi st argument may be set to
Tr ue to have SConsraise an exception if the file does not exist, or is otherwise inaccessible.

The optional onl y_one argument may be set to Tr ue to have SCons raise an exception if the file contains
dependency information for more than one target. This can provide a small sanity check for files intended to be
generated by, for example, the gcc - Mflag, which should typically only write dependency information for one
output fileinto a corresponding . d file.

fil enane and al of thefileslisted therein will be interpreted relative to the directory of the SConscr i pt file
which callsthe Par seDepends function.

env.Par seFl ags(fl ags, ...)
Parses one or more strings containing typical command-line flags for GCC-style tool chains and returns a
dictionary with the flag values separated into the appropriate SCons construction variables. Intended as a
companiontotheenv. Mer geFl ags method, but allowsfor the valuesin the returned dictionary to be modified,
if necessary, before merging them into the construction environment. (Note that env. Mer geFl ags will call
this method if its argument is not adictionary, so it is usually not necessary to call env. Par seFl ags directly
unless you want to manipulate the values.)

If the first character in any string is an exclamation mark (!), the rest of the string is executed as a command,
and the output from the command is parsed as GCC tool chain command-line flags and added to the resulting
dictionary. This can be used to call a*- confi g command typical of the POSIX programming environment
(for example, pkg-config). Note that such acommand is executed using the SCons execution environment; if the
command needs additional information, that information needs to be explicitly provided. See Par seConfi g
for more details.

Iy
=== SCONS 340

Flag values are translated according to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LI NKFLAGS
-D CPPDEFI NES

- f ramewor k FRANVEWORKS

- f ramewor kdi r= FRANVEWORKPATH

-fmerge-al |l -constants

CCFLAGS, LI NKFLAGS

-fopennp CCFLAGS, LI NKFLAGS
-fsanitize CCFLAGS, LI NKFLAGS
-incl ude CCFLAGS

-1 macr os CCFLAGS

-i sysr oot CCFLAGS, LI NKFLAGS
-isystem CCFLAGS

-iquote CCFLAGS

-idirafter CCFLAGS

- CPPPATH

- LI BS

-L LI BPATH

- Mmo- cygw n CCFLAGS, LI NKFLAGS
- mrvi ndows LI NKFLAGS

- opennp CCFLAGS, LI NKFLAGS
- pt hr ead CCFLAGS, LI NKFLAGS
-std= CFLAGS

-stdlib= CXXFLAGS

-\, ASFLAGS, CCFLAGS
-W, -rpat h= RPATH

-W, -R, RPATH

-W, -R RPATH

-W, LI NKFLAGS

- W, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LI NKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LI BS
construction variable.

Examples (all of which produce the same result):

dict = env.ParseFl ags(' -2 -Df oo -Dbar=1")

dict = env.ParseFlags('-', '-Dfoo', '-Dbar=1")
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-Q', '!lecho -Dfoo -Dbar=1")

Pl at f or m(pl at)

env.Pl at f or m(pl at)
When called as a global function, returns a callable platform object selected by pl at (defaults to the detected
platform for the current system) that can be used to initialize a construction environment by passing it as the
pl at f or mkeyword argument to the Envi r onnent function.

Example:

env = Environment (pl atform=Pl atfornm('wi n32'))

Iy
=== SCONS 341

Pre
env

env

env

When called as a method of an environment, calls the platform object indicated by pl at to update that
environment.

env. Pl at f or n{' posi x")
See the manpage section "Construction Environments' for more details.

cious(target, ...)

Precious(target, ...)

Markst ar get asprecioussoitisnot deleted beforeit isrebuilt. Normally SCons deletes atarget before building
it. Multiple targets can be passed in a single call, and may be strings and/or nodes. Returns alist of the affected
target nodes.

Prepend(key=val, [...])

Prepend values to construction variables in the current construction environment, works likeenv. Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env. Prepend(CCFLAGS='-g ', FOO=['foo0.yyy'])
Seealsoenv. Append, env. AppendUni que and env. Pr ependUni que.

.PrependENVPat h(nane, newpath, [envnane, sep, delete_existing=True])

Prepend directory paths from newpat h to a search-path entry nane in construction variable envnare in the
current enviromment (env). If envnane is not given, the default is" ENV" (see $ENV). envnane is expected
to refer to adictionary-like object; if it doesnot exist in env it will be created asan initially empty dict. newpat h
may be specified asastring, adirectory node, or alist of strings. If astring, it may contain multiple paths separated
by the system path separator (0s. pat hsep), or, if specified, by the value of sep. Top-relative path strings
(starting with #) are recognized. The type of the existing value of namne is preserved.

Pathswill only appear once. Duplicate pathsin newpat h areremoved, preserving thefirst occurrenceto maintain
path order. If del et e_exi sti ng is true (the default), existing duplicates are removed before prepending,
otherwise, new duplicates are skipped. During comparisons, paths are normalized, to avoid issues with case
differences (on case-insensitive filesystems) and with relative paths that may refer back to the same directory.
The stored values are not modified by this process.

Example:

print('before:', env['ENV'][' | NCLUDE])

i ncl ude _path = '/foo/bar:/foo'

env. PrependENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:', env['ENV'][' I NCLUDE])
Yields:

before: /biz:/foo

after: /fool/bar:/foo:/biz

See also env. AppendENVPat h.

~

'—‘—' SCONS 342

env.PrependUni que(key=val, [...], [del ete_existing=Fal se])
Prepend valuesto construction variables in the current construction environment, maintaining uniqueness. Works
like env. Append, except that values are added to the front, rather than the end, of the construction variable,
and values that would become duplicates are not added. If del et e_exi st i ng is set to atrue value, then for
any duplicate, the existing instance of val isfirst removed, then val isinserted, having the effect of moving
it to the front.

Example:

env. PrependUni que(CCFLAGS=' -g', FOO=['foo0.yyy'])
Seealsoenv. Append, env. AppendUni que and env. Pr epend.

Progress(cal l abl e, [interval])

Progress(string, [interval, file, overwite])

Progress(list_of _strings, [interval, file, overwite])
Allows SConsto show progress made during the build by displaying astring or calling afunction while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object that hasa ___cal | __ method), the
functionwill becalledonceeveryi nt er val timesaNodeisevaluated (default 1). Thecallablewill be passed the
evaluated Node asitsonly argument. (For future compatibility, it'sagood ideato also add * ar gs and * * kwar gs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additiona argumentsin the future.)

An example of asimple custom progress function that prints a string containing the Node name every 10 Nodes:
def ny_progress_function(node, *args, **kwargs):
print (' Eval uati ng node %!' % node)

Progress(my_progress_function, interval =10)

A more complicated example of acustom progress display object that prints a string containing a count every 100
evaluated Nodes. Notetheuseof \ r (acarriagereturn) at the end so that the string will overwriteitself on adisplay:

i mport sys
cl ass ProgressCount er (object):
count = 0
def _ call__(self, node, *args, **kw):

sel f.count += 100
sys.stderr.wite('Eval uated % nodes\r' % sel f.count)

Progress(ProgressCounter (), interval =100)

If thefirst argument to Pr ogr ess isastring or list of strings, it istaken astext to be displayed every i nt er val
evaluated Nodes. If the first argument is alist of strings, then each string in the list will be displayed in rotating
fashion every i nt er val evaluated Nodes.

The default isto print the string on standard output. An alternate output stream may be specified with thefi | e
keyword argument, which the caller must pass aready opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

Iy
=== SCONS 343

i mport sys
Progress('.', interval =100, fil e=sys.stderr)

If the string contains the verbatim substring $TARGET; , it will be replaced with the Node. Note that, for
performance reasons, thisis not a regular SCons variable substitution, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\ r)
to cause each line to overwritten by the next line, and the over wr i t e keyword argument (default Fal se) to
make sure the previously-printed file name is overwritten with blank spaces:

i mport sys
Progress(' $TARGET\r', overw it e=True)

A list of strings can be used to implement a" spinner" on the user's screen asfollows, changing every five evaluated
Nodes:

Progress(['-\r", "\\\r', "|\r"', "/\r'], interval =5)
Pseudo(target, ...)
env.Pseudo(target, ...)

Marks t ar get as a pseudo target, not representing the production of any physical target file. If any pseudo
t ar get doesexist, SConswill abort the build with an error. Multiple targets can be passed in asingle call, and
may be strings and/or Nodes. Returns alist of the affected target nodes.

Pseudo may be useful in conjuction with a builder call (such as Conmmand) which does not create a physical
target, and the behavior if the target accidentally existed would beincorrect. Thisissimilar in concept to the GNU
make . PHONY target. SCons also provides a powerful target alias capability (see Al i as) which may provide
more flexibility in many situations when defining target names that are not directly built.

PyPackageDi r (modul ename)
env.PyPackageDi r (modul enane)

env

Finds the location of mrodul enane, which can be a string or a sequence of strings, each representing the name
of aPython module. Construction variables are expanded in nodul enane. ReturnsaDirectory Node (seeDi r),
or alist of Directory Nodesif nodul enan®e isasequence. None isreturned for any module not found.

When a Tool module which is installed as a Python module is used, you need to specify a t ool pat h
argument to Tool , Envi r onment or G one, astools outside the standard project locations (si t e_scons/
si te_t ool s)will not befound otherwise. Using PyPackageDi r alowsthispath to be discovered at runtime
instead of hardcoding the path.

Example:

env = Environment (
tool s=["default", "Exanpl eTool "],
t ool pat h=[PyPackageDi r ("exanpl e_tool ")]

)

.Repl ace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

~

'—‘—' SCONS 344

Rep
env

Req
env

Ret

env. Repl ace(CCFLAGS=' - g', FOO='f 00. xxx")

osi tory(di rectory)

.Repository(directory)

Setsdi r ect or y asarepository to be searched for files contributing to the build. Multiplecallsto Reposi t ory
are allowed, with repositories searched in the given order. Repositories specified via command-line option have
higher priority.

In scons, arepository is partial or complete copy of the source tree, from the top-level directory down, containing
source files that can be used to build targets in the current worktree. Repositories can also contain derived files.
An example might be an official source tree maintained by an integrator. If a repository contains derived files,
they should be the result of building with SCons, so a signature database (sconsign) is present in the repository,
allowing better decisions on whether they are up-to-date or not.

Note that if an up-to-date derived file aready exists in a repository, scons will not make a copy in the local
directory tree. If you need alocal copy to be made, usethe Local method.

uires(target, prerequisite)

.Requi res(target, prerequisite)

Specifies an order-only relationship betweent ar get and pr er equi si t e. The prerequisites will be (re)built,
if necessary, before the target file(s), but the target file(s) do not actually depend on the prerequisites and will not
be rebuilt simply because the prerequisite file(s) change. t ar get and pr er equi si t e may each be a string
or Node, or alist of strings or Nodes. If there are multiplet ar get values, the prerequisite(s) are added to each
one. Returns alist of the affected target nodes.

Example:
env. Requires('foo', 'file-that-nust-be-built-before-foo')
urn([vars..., stop=True])

Return to the calling SConscript, optionally returning the values of variables named in var s. Multiple strings
containing variable names may be passed to Ret ur n. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tupleif var s is omitted.

By default Ret ur n stops processing the current SConscript and returnsimmediately. Theoptional st op keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Ret ur n
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variablesin the named var s at the point Ret ur n was called.

Examples:

Returns no val ues (eval uates Fal se)
Ret urn()

Returns the value of the '
Return("foo")

foo' Python variabl e.

Returns the values of the Python variables 'foo’ and 'bar'.

Return("foo", "bar")

Returns the val ues of Python variables 'vall and 'val2'.

Return('val 1 val 2")

~

'—‘—' SCONS 345

Scanner (functi on, [name, ar gunent , skeys, pat h_functi on, node_cl ass,
node_factory, scan_check, recursive])
env.Scanner (f unct i on, [name, ar gunent , skeys, pat h_f uncti on, node_cl ass,
node_factory, scan_check, recursive])
Creates a Scanner object for the specified f unct i on. See manpage section "Scanner Objects’ for a complete
explanation of the arguments and behavior.

SConscri pt (scri pt nanes, [exports, variant _dir, duplicate, nust_exist])
env.SConscri pt (scri pt names, [exports, variant _dir, duplicate, nust_exist])
SConscri pt (di rs=subdirs, [nane=scriptnane, exports, variant_dir, duplicate,
nmust _exi st])
env.SConscri pt (di rs=subdi rs, [nane=scriptname, exports, variant _dir, duplicate,
nmust _exi st])
Executes subsidiary SConscript (build configuration) file(s). There are two ways to call the SConscr i pt
function.

Thefirst caling style is to supply one or more SConscript file names as the first positional argument, which can
be astring or alist of strings. If there is a second positional argument, it is treated as if the expor t s keyword
argument had been given (see below). Examples:

SConscri pt (' SConscript') # run SConscript in the current directory
SConscri pt (' src/ SConscript') # run SConscript in the src directory
SConscri pt (['src/ SConscript', 'doc/SConscript'])

SConscript (Split('src/SConscript doc/ SConscript'))

config = SConscript (' MyConfig.py')

The second calling styleis to omit the positional argument naming the script and instead specify directory names
using the di r s keyword argument. The value can be a string or list of strings. In this case, scons will execute
a subsidiary configuration file named SConscr i pt (by default) in each of the specified directories. You may
specify aname other than SConscr i pt by supplying anoptional nane=scr i pt nanme keyword argument. The
first three examples below have the same effect as the first three examples above:

SConscript(dirs=".") # run SConscript in the current directory
SConscript(dirs="src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])

SConscri pt (di rs=['subl', 'sub2'], name='MySConscript')

Theoptional expor t s keyword argument specifiesvariablesto make availablefor use by the called SConscripts,
which are evaluated in an isolated context and otherwise do not have access to local variables from the calling
SConscript. The value may be astring or list of strings representing variable names, or a dictionary mapping local
namesto the namesthey can beimported by. For thefirst (scriptnames) calling style, asecond positional argument
will also be interpreted as expor t s; the second (directory) caling style accepts no positional arguments and
must use the keyword form. These variables are locally exported only to the called SConscript file(s), and take
precedence over any same-named variables in the global pool managed by the Expor t function. The subsidiary
SConscript filesmust usethe | npor t function to import the variables into their local scope. Examples:

foo = SConscri pt (' sub/ SConscript', exports='env')

SConscript (' dir/SConscript', exports=['env', 'variable'])
SConscri pt (dirs="subdir', exports='env variable')
SConscript(dirs=['one', '"two', 'three'], exports='shared_info')

If theoptional var i ant _di r argument is present, it causes an effect equivalent tothe Var i ant Di r function,
but in effect only within the scope of the SConscri pt cal. Thevari ant _di r argumentisinterpreted relative

Iy
=== SCONS 346

to the directory of the calling SConscript file. The source directory isthe directory in which the called SConscript
file resides and the SConscript fileis evaluated asif it wereinthevar i ant _di r directory. Thus:

SConscri pt (' src/ SConscript', variant _dir="build")
isequivalent to:

VariantDir('build, "src')

SConscri pt (' bui | d/ SConscri pt')

If the sources are in the same directory asthe SConst r uct ,

SConscri pt (' SConscript', variant_dir="build")

isequivaent to:

VariantDir (' build, '.")
SConscri pt (' bui | d/ SConscri pt')

The optional dupl i cat e argument is interpreted as for Vari ant Di r. If the vari ant _di r argument is
omitted, the dupl i cat e argument is ignored. See the description of Var i ant Di r for additional details and
restrictions.

If the optional must _exi st isTr ue (the default), an exception israised if a requested SConscript file is not
found. To allow missing scripts to be silently ignored (the default behavior prior to SCons version 3.1), pass
must _exi st =Fal se inthe SConscri pt cal.

Changed in 4.6.0: must _exi st now defaultsto Tr ue.

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_i nfo = SConscri pt (' MyConfi g. py')

SConscri pt (' src/ SConscript', exports='shared_info')

SConscri pt (' doc/ SConscript', exports='shared_info')

bui |l d debuggi ng and production versions. SConscri pt

can use Dir('."'").path to determ ne vari ant.

SConscri pt (' SConscript', variant_dir="debug', duplicate=0)
SConscri pt (' SConscript', variant_dir="prod' , duplicate=0)

buil d debuggi ng and production versions. SConscri pt
is passed flags to use.

opts = { 'CPPDEFINES : ['DEBUG], 'CCFLAGS : '-pgdb' }
SConscri pt (' SConscript', variant_dir="debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG], 'CCFLAGS : '-0 }

SConscri pt (' SConscript', variant _dir="prod' , duplicate=0, exports=opts)

Iy
=== SCONS 347

build comon docunentation and conpile for different architectures
SConscri pt (' doc/ SConscri pt', variant _dir="buil d/ doc', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="buil d/ x86', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ ppc', duplicate=0)

SConscri pt returns the values of any variables named by the executed SConscript file(s) in arguments to the
Ret ur n function. If asingle SConscr i pt call causes multiple scriptsto be executed, thereturn valueisatuple
containing the returns of each of the scripts. If an executed script does not explicitly call Ret ur n, it returnsNone.

SConscri pt Chdi r (val ue)
By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives
whilereading and processing that script. Thisbehavior may be disabled by specifying an argument which evaluates
false, in which case scons will stay in the top-level directory while reading all SConscript files. (This may be
necessary when building from repositories, when all the directories in which SConscript files may be found don't
necessarily exist locally.) Y ou may enable and disablethisability by calling SConscr i pt Chdi r multipletimes.

Example:

SConscri pt Chdi r (Fal se)

SConscri pt (' foo/ SConscript') # will not chdir to foo
SConscri pt Chdi r (True)

SConscri pt (' bar/ SConscript') # will chdir to bar

SConsi gnFi | e(namre, dbm nodul e])

env.SConsi gnFi | e([name, dbm nodul e])
Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify alternate database files and/or file locations for different types of builds.

The optional nane argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConst ruct file. The default is. sconsi gn. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm nodul e

Theoptional dbm _nodul e argument specifies which Python database module to use for reading/writing thefile.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons. dbl i t e module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbmmodule for other available types.

If called with no arguments, the database will defaultto. sconsi gn. dbl i t e inthetop directory of the project,
which is also the default if if SConsi gnFi | e isnot called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on nane. There should only be one active call to this function/method in a given build setup.

If nane is set to None, scons will store file signatures in a separate . sconsi gn file in each directory, not
in a single combined database file. This is a backwards-compatibility measure to support what was the default
behavior prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a
future SCons release.

Examples:
Explicitly stores signatures in ".sconsign.dblite"

in the top-level SConstruct directory (the default behavior).
SConsi gnFi | e()

Iy
=== SCONS 348

Stores signatures in the file "etc/scons-signatures”
relative to the top-level SConstruct directory.

SCons will add a database suffix to this nane.
SConsi gnFi | e("et c/ scons-si gnat ures")

Stores signatures in the specified absolute file nane.
SCons will add a database suffix to this nane.
SConsi gnFi | e("/ hone/ ne/ SCons/ si gnat ur es™)

Stores signatures in a separate .sconsign file
in each directory.
SConsi gnFi | e(None)

Stores signatures in a GNU dom format .sconsign file
i mport dbm gnu
SConsi gnFi | e(dbm nodul e=dbm gnu)

env.Set Def aul t (key=val , [...])

Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env. Set Def aul t (FOO=' f 00")
if "FOO not in env:
env[' FOO] = 'foo

Set Opti on(nanme, val ue)

env.Set Opt i on(nane, val ue)
Set option variable nane to val ue. Settable options have corresponding command-line arguments, which can
be used for one-time overrides, as a value set via command-line option will take precedence over one set with
Set Opt i on. Thetable shows the correspondence between the option name and the command-line argument(s).
Set Optioncalscanadsobeplacedinasite i nit. py file

Thebehavior of the optionsisdescribed inthe manpage entry for the command-lineversion. Theval ue parameter
is mandatory; for option values which are boolean in nature (that is, the command line option does not take an
argument) use aval ue which evaluatesto true (e.g. Tr ue, 1) or false (e.g. Fal se, 0).

Options which affect the reading and processing of SConscript files are not settable using Set Opt i on since
those files must be read in order to find the Set Opt i on call in thefirst place.

For project-specific options (sometimes called local options) added via an AddOpt i on call, Set Opti on
is available only after the AddOpt i on call has completed successfully, and only if that call included the
set t abl e=Tr ue keyword argument.

The settable variables with their associated command-line options are:

Settable name Command-line argument Notes

cl ean -c,--clean,--renove

di skcheck --di skcheck

duplicate --duplicate

experi nent al - -experi nent al Snce4.2.

hash_chunksi ze - -hash-chunksi ze Replaces nd5_chunksi ze. Snce
42

Iy
=== SCONS 349

Settable name Command-line argument Notes
hash_f or mat --hash- f or mat Snce4.2
hel p -h,--help
implicit_cache --inplicit-cache
i mplicit_deps_changed --inmplicit-deps-changed |Also sets inplicit_cache.
Settable since 4.2
i mplicit_deps_unchanged |--inplicit-deps- Also sets inplicit_cache.
unchanged Settable since 4.2
max_drift --max-drift
nmd5_chunksi ze - - hash- chunksi ze Synonym for hash_chunksi ze.
Deprecated since 4.2
no_exec -n, --no-exec, --just-
print,--dry-run,--recon
no_progress -Q See?
num j obs -j,--jobs
random --random
si |l ent -s,--silent,--quiet

stack_si ze

--stack-size

war n

--warn

Si deEf f ect (si de_effect,
env.Si deEf f ect (si de_ef fect,

4f no_pr ogr ess isset viaSet Opt i on in an SConscript file (but not if setinasi t e_i ni t . py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the Set Opt i on.

Example:

Set Option(' max_drift', 0)

target)

target)

Declaressi de_ef f ect asasideeffect of buildingt ar get . Bothsi de_ef f ect andt ar get canbealist,
afile name, or anode. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB fileis created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If atarget is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the si de_ef f ect target
is not automatically removed when the t ar get is removed by the - ¢ option. (Note, however, that the
si de_ef f ect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
thesi de_ef f ect iscleaned whenever aspecifict ar get iscleaned, you must specify this explicitly with the
Cl ean or env. O ean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

Split(arg)
env.Split(arg)

If ar g is astring, splits on whitespace and returns a list of strings without whitespace. This mode is the most
common case, and can be used to split alist of filenames (for example) rather than having to type them as alist of
individually quoted words. If ar g isalist or tuplereturnsthe list or tuple unchanged. If ar g is any other type of

'—‘-' SCONS

350

env

Tag

object, returns a list containing just the object. These non-string cases do not actually do any spliting, but allow
an argument variable to be passed to Spl i t without having to first check its type.

Example:
files = Split("fl.c f2.¢c f3.c")
files = env.Split("fd4.c f5.c f6.c")
files = Split("""

f7.c

f8.c

fo.c

")

Ssubst (i nput, [raw, target, source, conv])

Performs construction variable interpolation (substitution) on i nput , which can be a string or a sequence.
Substitutable elements take the form ${ expr essi on}, athough if there is no ambiguity in recognizing the
element, the braces can be omitted. A literal $ can be entered by using $$.

By default, leading or trailing white space will be removed from the result, and all sequences of white space will
be compressed to asingle space character. Additionally, any $(and$) character sequenceswill be stripped from
the returned string, The optional r aw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. Ther aw argument may be set to 2 if you want to additionally discard all characters between any $(
and $) pairs (asisdone for signature calculation).

If i nput isasequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will bereturned asalist.

The optional t ar get and sour ce keyword arguments must be set to lists of target and source nodes,
respectively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion.
Thisisusually necessary if you are calling env. subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use a Python lambda
expression to pass in an unnamed function that simply returns its unconverted argument.

Example:

print (env. subst ("The C conpiler is: $CC'))

def compil e(target, source, env):
sourceDir = env. subst (
"${ SOURCE. srcdir}",
t ar get =t ar get ,
sour ce=sour ce

)
sour ce_nodes = env. subst (' $EXPAND _TO NODELI ST', conv=l anbda x: x)
(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files

or directories. All Node-level tags are optional.

Examples:

~

'—‘-‘ SCONS 351

makes sure the built library will be installed with 644 file access node
Tag(Library('lib.c'), UN X _ATTR="00644")

marks file2.txt to be a docunentation file
Tag('file2.txt', DOC)

Tool (nane, [tool path, key=value, ...])
env.Tool (nane, [tool path, key=value, ...])

Va

L ocates thetool specification module nane and returns a callable tool object for that tool. When the environment
method (env. Tool) form is used, the tool object is automatically called before the method returns to update
env, and nane is appended to the $TOCLS construction variable in that environment. When the global function
Tool formisused, thetool object isconstructed but not called, asit lacks the context of an environment to update,
and the returned object needs to be used to arrange for the call.

Thetool module is searched for in the tool search paths (see the T ools section in the manual page for details) and
in any paths specified by the optional t ool pat h parameter, which must be a list of strings. If t ool pat h is
omitted, thet ool pat h supplied when the environment was created, if any, is used.

Any remaining keyword arguments are saved in thetool object, and will be passed to thetool modulesgener at e
function when thetool objectisactually called. Thegener at e function can update the construction environment
with construction variables and arrange any other initialization needed to use the mechanisms that tool describes,
and can use these extra arguments to help guide its actions.

Changedinversion4.2: env. Tool now returnsthetool object, previously it did not return (i.e. returned None).

Examples:

env. Tool (' gcc')
env. Tool (' opengl', tool path=["build/tools'])

The returned tool object can be passed to an Envi r onnment or C one call as part of thet ool s keyword
argument, in which case the tool is applied to the environment being constructed, or it can be called directly, in
which case a construction environment to update must be passed as the argument. Either approach will also update
the $TOCLS construction variable.

Examples:

env = Environnent (tool s=[Tool (' msvc')])

env = Environnent ()

msvct ool = Tool (' msvc')

nsvct ool (env) # adds 'nmsvc' to the TOOLS vari abl e
gltool = Tool ('opengl', toolpath = ['"tools'])
gltool (env) # adds 'opengl' to the TOOLS vari abl e

i dat eOpti ons([t hr ow_excepti on=Fal se])

Check that al the options specified on the command line are either SCons built-in options or defined via callsto
AddOpt i on. SCons will eventually fail on unknown options anyway, but calling this function allows the build
to "fail fast" before executing expensive logic later in the build.

This function should only be called after the last AddOpt i on call in your SConscri pt logic. Be aware that
some tools call AddOpt i on, if you are getting error messages for arguments that they add, you will need to
ensure that those tools are loaded before calling Val | dat eOpt i ons.

~

'—‘-‘ SCONS 352

If there are any unknown command line options, Val i dat eQpt i ons prints an error message and exits
with an error exit status. If the optional t hr ow_excepti on argument is Tr ue (default is Fal se), a
SConsBadQOpt i onEr r or israised, giving an opportunity for the SConscr i pt logic to catch that exception
and handle invalid options appropriately. Note that this exception name needs to be imported (see the example
below).

A common build problem istypos (or thinkos) - a user enters an option that isjust alittle off the expected value,
or perhaps a different word with a similar meaning. It may be useful to abort the build before going too far down
the wrong path. For example:

$ scons --conpilers=mngw # the correct flag is --conpiler

Here SCons could go off and run a bunch of configure steps with the default value of - - conpi | er, since
the incorrect command line did not actually supply a value to it, costing developer time to track down why the
configure logic made the "wrong" choices. This example shows catching this:

from SCons. Scri pt. SConsOpti ons i nport SConsBadQOpti onErr or

AddOpt i on(
'--conpiler',
dest=' conpi l er',
action='store',
defaul t =" gcc',
type='string',

)

... other SConscript logic ...

try:
Val i dat eOpt i ons(t hrow_excepti on=Tr ue)

except SConsBadOpti onError as e:
print(f"ValidateOptions detects a fail: ", e.opt_str)
Exit(3)

New in version 4.5.0

Val ue(val ue, [built _value], [nane])

env.Val ue(val ue, [built_value], [nane])
Returns a Node object representing the specified Python val ue. Value Nodes can be used as dependencies of
targets. If the string representation of the Value Node changes between SCons runs, it is considered out-of-date
and any targets depending on it will be rebuilt. Since Value Nodes have no filesystem representation, timestamps
are not used; the timestamp deciders perform the same content-based up to date check.

The optional bui | t _val ue argument can be specified when the Value Node is created to indicate the Node
should already be considered "built.”

The optional nane parameter can be provided as an alternative namefor theresulting Val ue node; thisisadvised
if theval ue parameter cannot be converted to a string.

Vaue Nodes have awr i t e method that can be used to "build" a Vaue Node by setting a new value. The
corresponding r ead method returns the built value of the Node.

Iy
=== SCONS 353

Changed in version 4.0: the nane parameter was added.

Examples:

env = Environment ()

def create(target, source, env):
"""Action function to create a file froma Val ue.

Wites 'prefi x=$SOURCE' into the file nanme gi ven as $TARCET.
with open(target[0], 'wb') as f:
f.wite(b' prefix=" + source[0].get_contents() + b'\n')

Fetch the prefix= argunent, if any, fromthe comuand |i ne.
Use /usr/local as the default.
prefix = ARGUVENTS. get (' prefix', '/usr/local")

Attach buil der naned Config to the construction environment
using the 'create' action function above.

env[' BU LDERS][Config'] = Buil der(acti on=create)

env. Confi g(target="package-config', source=Val ue(prefix))

def build_val ue(target, source, env):
"""Action function to "build* a Val ue.

Wites contents of $SOURCE i nto $TARCGET, thus updating if it existed.

target[0] . wite(source[0].get_contents())

out put = env. Val ue(' before')
i nput = env. Value('after"')

Attach a buil der naned UpdateVal ue to the constructi on environment
using the 'build_value' action function above.

env[' BUI LDERS'][' Updat eVal ue'] = Buil der (acti on=bui | d_val ue)

env. Updat eVal ue(t ar get =Val ue(out put), source=Val ue(i nput))

VariantDir(variant _dir, src_dir, [duplicate])

env.VariantDir(variant _dir, src_dir, [duplicate])
Sets up a mapping to define a variant build directory in vari ant _dir. src_di r must not be underneath
variant _dir. A VariantDir mapping is global, even if caled using the env. Vari antDi r form.
Var i ant Di r canbecalled multipletimeswiththesamesr c_di r toset up multiplevariant buildswith different
options.

Note if vari ant _di r isnot under the project top directory, target selection rules will not pick targets in the
variant directory unlessthey are explicitly specified.

When filesinvari ant _di r are referenced, SCons backfills as needed with files from src_di r to create a
complete build directory. By default, SCons physically duplicates the source files, SConscript files, and directory
structure as needed into the variant directory. Thus, abuild performed in the variant directory is guaranteed to be
identical to a build performed in the source directory even if intermediate source files are generated during the
build, or if preprocessors or other scanners search for included files using paths relative to the source file, or if
individual compilers or other invoked tools are hard-coded to put derived files in the same directory as source

Iy
=== SCONS 354

files. Only the files SCons calculates are needed for the build are duplicated into var i ant _di r . If possible on
the platform, the duplication is performed by linking rather than copying. This behavior is affected by the - -
dupl i cat e command-line option.

Duplicating the source files may be disabled by setting the dupl i cat e argument to Fal se. This will cause
SCons to invoke Builders using the path names of source filesin src_di r and the path names of derived
files within vari ant _di r. This is more efficient than duplicating, and is safe for most builds; revert to
dupl i cat e=Tr ue if it causes problems.

Vari ant Di r works most naturally when used with a subsidiary SConscript file. The subsidiary SConscript
file must be called as if it were in vari ant _di r, regardiess of the value of dupl i cat e. When calling
an SConscript file, you can use the exports keyword argument to pass parameters (individually or as an
appropriately set up environment) so the SConscript can pick up the right settings for that variant build. The
SConscript must | npor t these to use them. Example:

envl
env2

Envi ronnent (...settings for variantl...)
Envi ronnment (...settings for variant2...)

run src/SConscript in tw variant directories

VariantDir (' build/variantl', 'src')
SConscri pt (" bui | d/ vari ant 1/ SConscript', exports={"env": envl})
VariantDir (' build/variant2', "'src')

SConscri pt (" bui | d/ vari ant 2/ SConscript', exports={"env": env2})

See aso the SConscri pt function for another way to specify a variant directory in conjunction with calling
asubsidiary SConscript file.

More examples:

use nanes in the build directory, not the source directory
VariantDir('build, 'src', duplicate=0)
Progran(' bui |l d/ prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir('build , '.', duplicate=0)
SConscri pt (dirs=["'build/src',"'build/doc'])

sanme as previous exanple, but only uses SConscri pt
SConscript (dirs="src', variant_dir="build/src', duplicate=0)
SConscri pt (di rs="doc', variant _dir="buil d/doc', duplicate=0)

Vi rtual env()
If the SCons process is running inside a Python virtual environment, return the path to the directory where that
environment is stored, else an empty string. The result can be treated as a boolean value if the path is unneeded.

Wer el s(program [path, pathext, reject])
env.\Wher el s(program [path, pathext, reject])
Searches for the specified executable pr ogr am returning the full path to the program or None.

When called as a construction environment method, searches the paths in the pat h keyword argument, or if
None (the default) the paths listed in the construction environment (env[' ENV'] [' PATH]). The externa
environment's path list (0s. envi ron[' PATH]) isused as afalback if the key env[' ENV'][' PATH]
does not exist.

Iy
=== SCONS 355

On Windows systems, searches for executable programs with any of the file extensions listed in
the pat hext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env[' ENV'] [' PATHEXT']). The external environment's pathname extensionslist
(os. envi ron[' PATHEXT']) isused asafallback if thekey env[' ENV'] [' PATHEXT'] does not exist.

When called as a globa function, uses the external environment's path os. envi ron[' PATH] and path
extensionsos. envi ron[' PATHEXT'], respectively, if pat h and pat hext are None.

Will not select any path name or namesin the optional r ej ect list.

Iy
=== SCONS 356

Appendix E. Handling Common Tasks

There is a common set of simple tasks that many build configurations rely on as they become more complex. Most
build tools have specia purpose constructsfor performing thesetasks, but since SConscr i pt filesare Python scripts,
you can use more flexible built-in Python servicesto perform these tasks. This appendix lists a number of these tasks
and how to implement them in Python and SCons.

Example E.1. Wildcard globbing to create a list of filenames

files = d ob(wi | dcard)

Example E.2. Filename extension substitution

i mport os. path
filename = os.path.splitext(filenane)[0]+extension

Example E.3. Appending a path prefix to alist of filenames

i mport os. path
filenames = [os.path.join(prefix, x) for x in fil enanes]

Example E.4. Substituting a path prefix with another one

if filename.find(old_prefix) ==
filename = filenane.replace(ol d_prefix, new prefix)

Example E.5. Filtering a filenamelist to exclude/retain only a specific set of extensions

i mport os. path
filenames = [x for x in filenanmes if os.path.splitext(x)[1] in extensions]

Example E.6. The " backtick function”: run a shell command and captur e the output

i mport subprocess
out put = subprocess. check_out put (command)

Iy
=== SCONS 357

Example E.7. Generating sour ce code: how code can be generated and used by SCons

The Copy builders here could be any arbitrary shell or python function that produces one or more files. This example
shows how to create those files and use them in SCons.

SConstruct
env = Environnent ()
env. Append(CPPPATH = "#")

Header exanpl e
env. Append(BU LDERS =
{' Copyl' : Builder(action = 'cat < $SOURCE > $TARGET',
suffix=".h", src_suffix=".bar')})
env. Copyl('test.bar') # produces test.h fromtest.bar.
env. Program(' app',' main.cpp') # indirectly depends on test. bar

Source file exanple
env. Append(BU LDERS =
{' Copy2' : Builder(action = "'cat < $SOURCE > $TARGET',
suf fix=".cpp', src_suffix=".bar2")})
foo = env. Copy2(' foo.bar2') # produces foo.cpp from foo. bar2.
env. Progran(' app2',[' mai n2.cpp'] + foo) # conpiles nmain2. cpp and foo.cpp into app2.

Where main.cpp looks like this:
#i nclude "test.h"

produces this:

% scons -Q

cat < test.bar > test.h

CC -0 app main.cpp

cat < foo.bar2 > foo.cpp

cCc -0 app2 mai n2.cpp foo.cpp

Iy
=== SCONS 358

